اسنو دانلود

خرید فایل های آموزشی ، تحقیق ، مقاله ، پاورپوینت ، پروژه ، فتوشاپ ، کتاب

اسنو دانلود

خرید فایل های آموزشی ، تحقیق ، مقاله ، پاورپوینت ، پروژه ، فتوشاپ ، کتاب

بررسی موقعیت جغرافیائی و شرایط جوی منطقه بافق و معدن اسفوردی

شهرستان بافق به مرکزیت شهر بافق با مساحتی حدود 17850 کیلو متر مربع، به فاصله 120 کیلومتری جنوبشرقی شهرستان یزد، در طول َ38، o55 شرقی و عرض َ47،o31 شمالی واقع شده است
دسته بندی زمین شناسی
فرمت فایل doc
حجم فایل 41 کیلو بایت
تعداد صفحات فایل 59
بررسی موقعیت جغرافیائی و شرایط جوی منطقه بافق و معدن اسفوردی

فروشنده فایل

کد کاربری 8044

موقعیت جغرافیائی و شرایط جوی منطقه بافق و معدن اسفوردی

شهرستان بافق به مرکزیت شهر بافق با مساحتی حدود 17850 کیلو متر مربع، به فاصله 120 کیلومتری جنوبشرقی شهرستان یزد، در طول َ38، o55 شرقی و عرض َ47،o31 شمالی واقع شده است.

این شهرستان به وسیله راه آهن و راه آسفالته منشعب از یزد قابل دسترسی می‌باشد. از دیگر راههای ارتباطی می‌توان به محورهای بافق- بهاباد، بافق- شیطور و بافق- معدن چادرملو اشاره کرد.

جاده ارتباطی معدن اسفوردی بطول 5/2 کیلومتر، از کیلومتر 25 جاده بافق- بهاباد منشعب می‌گردد.

معدن اسفوردی در 35 کیلومتری شمال شرقی شهر بافق و در ارتفاع 1700 متری از سطح دریا واقع شده است و دارای کوههایی با روند شمال غربی - جنوب شرقی می‌باشد.

میزان بارندگی سالانه در منطقه بطور متوسط 50 میلی‌متر و میزان تبخیر فوق‌العاده شدید می‌باشد. به همین دلیل دارای آب و هوای گرم و خشک و اختلاف درجه حرارت زیاد در شبانه‌روزی می‌باشد. آب و هوا در قسمتهای کوهستانی منطقه معتدلتر می‌باشد. از لحاظ جریان آب در منطقه مذکور هیچگونه جریان آب دائمی وجود ندارد. پوشش گیاهی منطقه ضعیف و شامل بوته‌ها و به مقدار کمتر درخت و درختچه می‌باشد. از مهمترین حوضه‌های آبگیر منطقه می‌توان به دشت حسن‌آباد، دشت شیطور، دشت بهاباد و ده قطروم اشاره نمود.

این کانسار که در منطقه نسبتاً کوهستانی و با ارتفاع متوسط 1700 متر از سطح دریا قرار دارد دارای کوههایی با روند شمال غرب- جنوب شرقی می‌باشد. این کوهها به صورت ارتفاعات نه چندان مرتفع در منطقه کشیده شده‌اند و در ادامه آنها تپه‌هایی با دره و فرو رفتگی‌های کم و بیش عریض قرار گرفته است.

از نظر آب و هوائی دارای آب و هوای خشک و بیابانی می‌باشد. و از نظر میزان نزولات جوی، دارای بارندگی نسبتاً کم و در حدود تقریبی 50 میلیمتر در سال می‌باشد. البته گاهی اوقات مقدار بارندگی از این مقدار ذکر شده نیز تجاوز می‌نماید. از لحاظ جریان آب در منطقه مذکور، هیچگونه جریان آب دائمی وجود ندارد و تنها رودخانه منطقه، رود شور است که به دریاچه شور بافق می‌ریزد.

از لحاظ دما، دمای متوسط هوا در این منطقه در حدود 40 سانتی‌گراد است که این دما از حدود صفر درجه در زمستان تا 50 درجه در تابستان در حال تغییر است.

از نظر پوشش گیاهی، پوشش گیاهی منطقه نسبتاً ضعیف بوده بطوریکه ارتفاعات فاقد پوشش گیاهی و مناطق پست دارای پوشش گیاهی شامل بوته‌ها و درختچه‌ها می‌باشند.

2-2- زمین شناسی عمومی منطقه

محدوده مورد بحث در یکی از بالا، آمدگیهای قدیمی که قسمتی از واحد زمین شناسی ایران مرکزی محسوب می‌شود قرار گرفته است. فازکوهزایی آلپی در تشکیل بلوکهای ساختمانی مجزایی آن نقش اساسی را ایفا کرده است. یکی از این بلوکهای تشکیل شده، بلوک پشت بادام- بافق می‌باشد. که از طرف شرق و غرب بوسیله گسلهای بزرگ کوهبنان و دویران محدود شده است. بطوریکه این بلوک منطقه وسیعی از جمله کانسار فسفات اسفوردی را شامل شده است.

بلوک مورد نظر در محدوده شناخته شده متالوژنی ایران قرار دارد. در این بلوک معادنی از قبیل چفارت (آهن) اسفوردی (فسفات)- کوشک (سرب ورودی)- چادرملر (آهن و آپاتیت) قرار دارند.

در این ناحیه سنگهایی که کانی‌سازی آپاتیت در آنها انجام شده است. سنگهای آذرین (نفودی- خروجی) به سن پرکامبرین- کامبرین می‌باشند که در اینجا برای واضحتر شدن موضوع، توضیح مختصری در رابطه با چینه‌بندی- تکتونیک- ماگماستیم و متامورفیسم آن داده می‌شود.

2-2-1- چینه‌شناسی منطقه

چینه‌شناسی منطقه مذکور با توالی قدیم به جدید عبارتست از:

دوره پرکامبرین

ابتدا سنگهای دگرگونی با رخساره شیست سبز- آمفیبولیت- مرمر- گنیس (کمپلکس سرکوه - کمپلکس بنه شور) بوجود آمده‌اند بعد روی این واحدها را سنگهایی با رخساره شیست- گریواک- ماسه سنگ کوارتزیتی- شیلهای اسلیتی (سازند تا شک) پوشانیده‌اند.

دوره اینفراکامبرین

در این دوره مجموعه سنگهای منتسب به سری ریز و درزو در این دوره بوجود آمده‌اند که این سری با یک رخساره و لکانیکی- رسوبی و زمین ساختی در هم و بهم خورده شامل رسوبات پوشش تلماسه‌ای- دولومیتهای خاکستری تا قهوه‌ای رنگ چرت‌دار- ماسه سنگ‌های زرد رنگ- آهکهای سیاهرنگ- ریولیتهای صورتی- آجری و بالاخره افقهای آهن- آپاتیت و دایکهای دیابازی پوشیده می‌شود. بین سنگهای این سری و سنگهای ولکانیکی با ترکیب اسیدی تا متوسط و بین سنگهای این سری با نهشته‌های کامبرین حد فیزیکی شناخته شده‌ای وجود ندارد.

دوره مزوزوئیک

در این دوره نهشته‌های قاره‌ای تریاس و ژوراسیک و نهشته‌های کرتاسه بصورت گسترده‌ای و به فرم دگر شیبی روی واحدهای قدیمیتر قرار گرفته‌اند.

دوره نئوزوئیک: این دوره به سه بخش تقسیم می‌شود.

سنگهای پالئوسن تا ائوسن: سنگهای پالئوسن مربوط به گلنگلومرای کرمان هستند. سنگهای ائوسن شامل لایه‌های قاره‌ای همراه با مواد آتشفشانی می‌باشند که بصورت محدود در طول مناطق گسله رخنمون دارند. رسوبات میوسن شامل لایه‌های قرمز قاره‌ای می‌باشند که به طور دگرشیبی روی سنگهای مربوط به دوره ائوسن قرار گرفته‌اند و نهایتاً توسط کنگلومرای دوره نئوژن به صورت دگرشیب پوشیده می‌شوند.

دوره کواترنری

این دوره شامل پادگانه‌های آبرفتی- مخروطه افکنه‌های قلوه سنگی- آبرفتهای جدید تلماسه‌ای- کوهپایه‌ها و رسوبات کویری و نواحی بیابانی وسیع پیرامون رشته کوهها می‌باشد.

2-2-2- وضعیت تکتونیکی منطقه

از نظر تکنونیکی، منطقه تحت تاثیر رخداد زمین ساختی بابگالی (کاتانگایی) و نیز حرکات کوهزایی پس از دوره تریاس قرار گرفته است که پیامد آن، شکستگی پی سنگ پره کامبرین و نیز ایجاد و دگرشیبی زاویه‌ای شدید بین رسوبات کرتاسه و نهشته‌های قدیمتر می‌باشد.

در دوره‌های جدیدتر (پلیو- پلیستوسن) منطقه تحت تاثیر پیشروی دریا قرار گرفته است. بطوریکه در نهایت و بدنبال حوادث ذکر شده، گسلهای بزرگ بویژه گسلهای اصلی با روند شمال- جنوب پدید آمده است.

2-2-3- وضعیت ماگماتیسم در منطقه

از لحاظ ماگماتیسم در این منطقه، سنگهای آذرین در دامنه وسیعی از سنگهای بازیک تا کاملاً اسیدی حضور دارند که بصورت انواع نفوذی- نیمه عمیق و خروجی دیده می‌شوند کوارتزپورفیرها- ریولیتها- سینیتها- مونزونیتها- گرانیت‌ها- آنذری بازالتها- پلاژیوپورفیرها- آلبیتوفیرها شاهدی برای گفته فوق می‌باشند.

2-2-4- وضعیت دگرگونی در منطقه مورد مطالعه

از نظر دگرگونی در مناطق مختلف این بلوک نیز دو فاز پیوسته دگرگونی دینامیکی و حرارتی به ترتیب با ویژگیهای فشار زیاد و حرارت زیاد در سنگهای منتسب به پره کامبرین تشخیص داده شده‌اند که هر یک از نظر دگر شکلی- تشکیل میگماتیتها و سپس آناتکسی ویژگیهای خود را داشته‌اند.

2-3- زمین‌شناسی کانسار اسفوردی

کانسار اسفوردی در بقایای هوازده سنگهای پره کامبرین - کامبرین و مزوزوئیک واقع شده است. واحدهای سنگی محدوده کانسار، که قسمتی از واحدهای سری ریز و درز محسوب می‌شوند شامل مجموعه‌ای در هم و خرد شده‌ای هستند که مرکب از سنگهای ولکانیکی و رسوبی و همچنین سنگهای آذرین نفوذی می‌باشند که بشدت چین خورده و گسله خورده شده‌اند طبقات مزوزوئیک آن را عمدتاً ریولیتهای تریاس تشکیل می‌دهند.

در زیر توده معدنی سکانسی از سنگهای ولکانیکی- رسوبی- توف و آگلومرا (منتسب به سری ریزو و درز مربوط به دوره پره کامبرین - کامبرین) و در بعضی نقاط دولومیت وجود دارد. علاوه بر آن کانسار مزبور در سمت شمال و شمال غرب بوسیله تپه‌های ریولیتی و دولومیتهایی که کوه اسفوردی را می‌سازند احاطه شده است.

از لحاظ تکنونیکی علاوه بر وجود گسلهای زیاد با روند NNE-SSW ، NNW-SSE در ناحیه که با گسلهای اصلی نای بند- کوهنبان و زاگرس که در فاصله (250-50) کیلومتری قرار دارد. یک خطواره مهم و آشکار با امتداد ENE-WSW به طول چند کیلومتر کانسار اسفوردی را قطع کرده است و احتمال دارد تا معدن چفارت در سمت جنوب غربی امتداد پیدا کند.

رز دیاگرامهای تهیه شده منطقه، مجموعه ناپیوستگی مزدوجی را نشان می‌دهند که مجموعه اول امتدادهای ENE-WSW و NNE-SSW داشته و مجموعه دوم با روند NNW-ESE و N-S دیده می‌شوند.

علاوه بر آن در روی عکسهای هوائی، تعداد زیادی ساختمان دایره‌ای در این ناحیه دیده می‌شود که به احتمال زیاد یکی از آنها مربوط به نحوه گسترش سطحی کانسار اسفوردی می‌باشد. قطر قاعده‌ای دایره کانسار حدود 500 متر می‌باشد که برای واضحتر شدن مطالب فوق نقشه برداشت عکسهای هوایی به همراه رز دیاگرام برداشت شده از منطقه در زیر آورده شده است.

2-4- نحوه گسترش افقهای معدنی در کانسار

بر طبق نتایج به دست آمده از فاز‌های مختلف اکتشافی در معدن فسفات اسفوردی که اساس کار بر آورد ذخیره نگارنده بر آن استوار است 5 افق معدنی را می‌توان برای کانسار اسفوردی در نظر گرفت که عبارتند از:

1- افق آهنی یا افق I (افق آهن بدون آپاتیت و آهن پر عیار همراه آپاتیت)

2- افق آپاتیتی یا افق II

3- افق سنگره‌های سبز یا افق III

4- افق دایکها (دایکهای آپاتیتی)

5- افق زونهای آغشته مانند ریولیتها- زونهای برشی و دایکهای دیابازی و سنگهای دیابازیکی، که در نشان دادن افق 5 در مقاطع تا حد امکان و به دلیل عدم درخور توجه بودن ذخیره از آنها صرفنظر شده است که در اینجا در مورد هر یک از افقها به طور اختصار توضیح داده می‌شود.

2-4-1- افق آهنی

این افق که شامل افق آهنی بدون آپاتیت و آهن پر عیار همراه آپاتیت می‌باشد از یک توده آهنی تشکیل شده است که با مورفولوژی نسبتاً برجسته و بشکل یک عدسی کشیده و با طول تقریبی حدود 500 متر و با روند شمال غرب جنوب شرق و با شیب کلی 25 درجه به سمت شمال در منطقه ظاهر شده است. افق مذکور از لحاظ ضخامت، دارای ضخامت حداکثر در بخش بیرون زده که در ضلع شرقی توده آهن قرار دارد. می‌باشد که ضخامت مذکور به 80 متر می‌رسد. بر طبق گزارشات زمین‌شناسی، تماس آهن با سنگهای ولکانیکی کمر پایین خود معمولاً به صورت شارپ یا منقطع است. و هیچگونه پدیده تدریجی بین آن دو دیده نمی‌شود.

توده آهن مورد نظر در بدو تشکیل عمدتاً از کانی ماگنتیت تشکیل شده بود که بعدها در اثر پدیده مارتیزاسیون قسمت عمده آن به هماتیت تبدیل شده است. علاوه بر هماتیت و اکسیدهای آبدار نظیر گوئتیت- لیمونیت نیز وجود دارد که تشکیل آن به طور ثانویه صورت گرفته است.

این توده ماگنتیت- همایتیتی همواره با کانی آپاتیت همراه است و کانی آپاتیت یا به صورت رگه‌ای و یا پر کننده حفره‌ها و خلل و فرج آهن، آنرا همراهی می کند به طوریهک این باعث شده که توده آهن در بعضی جاها از آپاتیت پر عیار شده است و درصد آپاتیت آن از 50 درصد حجم کل سنگ نیز تجاوز نموده است. و در نهایت به افق آهن- آپاتیت تبدیل شده است. تجمع و تمرکز آپاتیت در توده آهن با چگونگی حرکت و مهاجرت عناصر سازنده این کانی ارتباط مستقیم دارد.

در بررسی و برآورد ذخیره هر دو افق (توده آهنی و آهن آپاتیتی) تحت عنوان افق آورده شده‌اند افق مذکور با توجه به الحاق دو افق با هم در حال حاضر دارای بیشترین ضخامت و بیشترین گسترش می‌باشد.

گسترش این افق به سمت شمال شرقی و در زیر افق آپاتیت (افق II) می‌باشد که در اینجا پس از باریک شدن محو می‌گردد. این افق همچنین در جهات جنوب- جنوب غربی- و شرقی در مجاورت ریولینها ناپدید می‌شود.

2-4-2- افق آپاتیتی

افق آپاتیتی یا افق اصلی که به علت بالا بودن مقدار عیار آپاتیت بعنوان افق اصلی فسفات نام گرفته است در مجاورت افق I قرار گرفته و متشکل از کانیهای آپاتیت- ماگنتیت- هماتیت- ترمولیت و اکتینولیت است. آپاتیت این افق اکثراً به صورت بلورهای دانه ریز و با حالت پودری شکل ظاهر می‌شود.


بررسی یکی از بلندترین ساختارهای تقویت شده باترکیبات زمین دراروپا

خلاصه یک ساختمان تقویت شده با طول 215 متر و ارتفاع 19 متر در Iserlohn ساخته شده است ساختمان در جاده 46A قرار داشته در پایه دارای ابعادی به شرح ذیل می باشد ارتفاع 716 ، پهنای 211 محاسبات طراحی بوسیله صورت پذیرفته است طراحی بنا بر صورت می پذیرد دیواره تکمیل شده دارای زاویه شیب 80 درجه می باشد این مقاله نگرش طراحی و جزئیات ساخت را تشریح می نماید ای
دسته بندی زمین شناسی
فرمت فایل doc
حجم فایل 17 کیلو بایت
تعداد صفحات فایل 26
بررسی یکی از بلندترین ساختارهای تقویت شده باترکیبات زمین دراروپا

فروشنده فایل

کد کاربری 8044

یکی از بلندترین ساختارهای تقویت شده باترکیبات زمین دراروپا

خلاصه: یک ساختمان تقویت شده با طول 215 متر و ارتفاع 19 متر در Iserlohn ساخته شده است. ساختمان در جاده 46A قرار داشته در پایه دارای ابعادی به شرح ذیل می باشد. ارتفاع 7/16 ، پهنای 2/11 محاسبات طراحی بوسیله صورت پذیرفته است. طراحی بنا بر صورت می پذیرد. دیواره تکمیل شده دارای زاویه شیب 80 درجه می باشد این مقاله نگرش طراحی و جزئیات ساخت را تشریح می نماید. این موارد شامل زمان ساخت،‌نحوه نصب، جزئیات پیرامون ساختار سطح آن می باشد.

نتایج محاسبات تخریب در طی دوره 2 ساله پس از ساخت مد نظر قرار می گیرد.

کلمات کلیدی: مورد مطالعه - خاکریزها - تسطیح - شبکه های زمین - کنترل

مقدمه

در سال 1997 یک اداره مرکزی جدید در Iserlobhm طراحی گردید. ساختار آن بگونه ای بود که دارای یک شیب خاص در جهت شمال بود. محل آن از غرب به خط راه آهن از شمال به جاده 46A منتهی می گردید. تفاوت سطح در مرزهای شمالی و جنوبی 17 متر بود. هدف ساختار حفاظت از ساختمان جدید در برابر شلوغی خیابان 46 A بود در عین حال محل پارک مناسبی را ایجاد می نمود. که در شکل 1 نشان داده شده است.

زیرنویس شکل 1 : ساختار طبیعی در بخش شمالی - جنوبی و ایده حاکم بر ساختار

در نتیجه زمینی به مساحت m2 3500 به عنوان محل پارک در جلوی ساختمان تعبیه گردید. یکی از خصوصیات ساختمان به کاربری یک عایق صوتی بود. به این دلیل، خط در راستای ساختار تقویت شده ثابت بود. خط در پایا دیواره به واسطه و جر و موزهای زمینی ثابت شده بود. این شرایط منجر به تغییر وضعیت 80 درجه ای ساختمان با افزایش ارتفاع m7/16 گردید. طول نهایی این دیواره در طول خط فوقانی به میزان m215 محاسبه گردید. در این راستا یک سری ساختارهای خاص تعبیه گردید. این پروسه به عنوان یک کار جانبی برای ساختمان انجام گردید.

در این ساختار از مواد بتونی با دانه بندی 32/0 و 45/0 استفاده گردید.

طرح و ساختار کامل ساختمان را ارائه می دهد.

2- طراحی ساختار زمین تقویت شده با استفاده از ترکیبات زمین

1-2: روش ساختار

نویسنده این مقاله روش ساختاری را پیشنهاد می نماید که به عنوان زمین تقویت شده با ترکیبات موجود در آن شناخته می شود. روش امکان طراحی ساختار را با توجه به مزیت استفاده از مواد ساختاری بازیافت شده فراهم می نماید. QRE دارای لایه های مختلفی بوده امکان شکل دهی سطح جلویی و خلفی خاک به طور همزمان وجود دارد. شکل 4 بخش عرضی ساختار را نشان می دهد. ساختار دارای مشخصات ذیل می باشد.

- ارتفاع ساختمان :‌m7/14 - حداکثر ارتفاع: m7/16

- زاویه متوسط انحراف :‌00/80 درجه - حداکثر پهنای پایه m02/11

طول کل سیستم : m5/21

پایه ساختار دارای پهنای بستر m5/3 بوده که بین ساختار و مرزهای حفاظتی کشیده شده است. امکان دستیابی و کنترل اهداف را فراهم می نماید. در پایانه جنوبی - غربی یک برج مارپیچ مانند ساخته شده است.

زیرنویس شکل 2 : بخش عرضی

2-2- مواد اولیه بکار رفته در این ساختار

ساختار خاک: خاک بازیافت شده : 45/0 تا 32/0

جاذبه مشخصه :

زاویه سایش:

چسبندگی :

خاک با دانسیته 100% فشرده می شود. این پروسه با استفاده از راهنمای آلمانی EIVE-STB a4 (ویرایش 1997) صورت می گیرد. پروسه های تقویت ذیل در نظر گرفته شده است.

تقویت اولیه : محصول701 TENAX TT نیروی کششی

کشش نهایی

تقویت ثانویه محصول220 TENAX LBo نیروی کششی

کشش نهایی 10% = E

تقویت استاتیک در قالب کشش یکسویه با پلی اتیلن صورت می پذیرد. این ساختار دارای پهنای 1000 می باشد. در راستای نیرو هیچگونه پوشش ساختاری مجاز نمی باشد. در برش عرضی Grid در کنار یکدیگر قرار می گیرند. در عین حال شاهد مقداری پوشش در این ساختار هستیم. از آنجا که خمش شبکه های گسترش یافته در یک سو در بخش جلویی سخت می باشد. یک grid منعطف اضافی مورد استفاده قرار می گیرد. بنابر محاسبات طرح - ساخت میان لایه های ساختار ترکیبی تا پایین ترین پایه ساختار m45/0 می باشد برای تعبیه ساختارها m9/0 می باشد. در جهت تسهیل پروسه، دستیابی به تقویت ساختار مناسب (تقویت ثانویه) از یک ترکیب خاص استفاده می شود که در نیمه بالایی نیز به کار می رود و بنابر دو نوع تقویت مورد استفاده مساحت مؤثر میان لایه ها در نیمه پایانی m45/0 می باشد. شکل 2 طرح برش عرضی را در 34/124+0 نشان می دهد. تقویت اولیه بوسیله تنش و تقویت 4/0 بوسیله خط ارائه گردیده است.

3-3- ساختار و جزئیات مرتبط با آن

خط فوقانی به واسطه نیاز به حفاظت در برابر نویز تثبیت می گردد. این پروسه در قالب انحراف 80 درجه تعیین می گردد. استفاده از خاکریز در این مورد ممکن نمی باشد چرا که انحراف در این پروسه کمتر از 80 می باشد. همچنین حفاظت از نویز دچار اختلال می گردد. به هر حال انحراف 80 مشکلات زیادی به بار می آورد. این پروسه در دو مرحله قابل بررسی می باشد.

مرحله اول : پروسه ابتدایی

مرحله ثانویه : پروسه ثانویه

اولین مرحله به تسطیح ساختار سیستم در یک شبکه مستحکم کمک می کند. این طرحها دارای شیب 80 درجه می باشد، همچنین در اولین مرحله از یک سری همین خاص استفاده گردید. این روند در قالب رویه فوقانی خاک در ساختار مورد نظر مشاهده گردید تا از فرسایش بخش جنوبی ساختمان جلوگیری نماید. مرحله دوم پس از اتمام کار ساختمان تشکیل گردید. در این ساختار یک شبکه سیمی تقویت شده به فاصله m5/0 مورد استفاده قرار گرفت این شبکه سیستم های تقویت مختلفی مورد استفاده قرار گرفت که سبب جلوگیری از بروز فرسایش می گردید تقویت اولیه در بخش جلویی ساختمان متمرکز می گردد. به طوریکه ضخامت آن بدون المانهای مرزی مواد اولیه m3/0 می باشد. کنترل فرسایش به به کاربری یک ساختار پلیمری که از فیبرهای نخی بازیافت شده تشکیل شده است محقق می گردد. جزئیات مهم ساختار دارای پهنای cm2 در بخش فوقانی هر لایه در بخش جلویی می باشد.

به دلیل و انحراف 80 در ساختار این سیستم به کارگیری از یک سیستم جمع آوری آب اضافی حاصل از بارش باران بر این ساختار طراحی گردیده است.

زیرنویس شکل 3 : جزئیات کار در این پروسه

3 طراحی : بررسی ابعاد ساختار بنا بر و نظریه ‌نسبی صورت می پذیرد. پایداری داخلی و خارجی ساختمان محاسبه شده است. این پروسه در قالب سه بخش ارائه گردیده است.

فاکتور کاهش A1-A4 و ضریب اصطکاک به وسیله سازندگان ارائه گردیده است این مقادیر به شرح ذیل می باشد.

A1= 62/2

A2=10/1

A3=00/1

A4= 00/1

حداکثر نیروی کششی تقویت شده در دوره های طولانی مدت 25% مشخصات نیروی کششی در کوتاه مدت می باشد. به هنگام طراحی، پیش بینی تخریب ساختار ضروری به نظر می رسد.

این پروسه با تخریب نسبی ساختار در یک راستای مشخص در ارتباط است. اما تخریب عرضی به راحتی قابل پیش بینی می باشد. برای این محاسبات روشهای FEM راه حلهای مناسبی می باشند. در کارکرد این پروسه این المانها به کار نمی روند چرا که نیازمند برنامه های گران قیمتی می باشند که نیازمند نفر - ساعت کار بسیار وسیعی می باشد. این نتایج به ورودی سیستم وابسته می باشد. یک روش کاربردی پیرامون این مشکل مشابه تخریب ساختار در هنگام پروسه ساخت و پس از آن می باشد. در این صورت مقادیر ورودی محاسبات به هنگام کنترل ساختار برای مشکلات ممکن چک می گردد. همچنین پروسه ساختار در حین کار 2 سال پس از اتمام آن تحت کنترل قرار می گیرد. محاسبات تخریب در ارتفاعات 16.7m , 12m , 9.5m , 3 m صورت می پذیرد (در برشهای عرضی m8 )

این تخریب به صورت سه بعدی درنظر گرفته می شود.

4- نتایج

1-4- پروسه ساخت: کار ساخت به وسیله lobbe Holding Gmbu80 صورت می گیرد.

کارمندان تجربه ای در زمینه روش ساخت نداشته اند. در نتیجه معرفی زمین با استفاده از ترکیبات درون آن ضروری به نظر می رسد. این مقدمه شامل 2 روزیکه با کمک کاربردی در مراحل اولیه بوده کار پروسه ساخت کنترل می گردد.

سرکشی های منظم و چک های اعلام نشده ، کیفیت کار را ارتقاء می کند.

پروسه ساخت با مشکلات ذیل همراه می باشد.

مشکلات در حفظ شیب مورد نظر

- امنیت کاری مناسب در محیط کار مخصوصاً خطر سقوط

- دستیابی به درجه مورد نظر در فشرده سازی خاک

- انحراف از تکنولوژی فشرده سازی بنا بر محاسبات طرح

مشکل اول حفاظت از انحرافات سطح می باشد . به این دلی،‌از مواد ترکیبی خاصی استفاده گردید. این سیستم بدون مشکل ارتفاع قابلیت کارکرد دارد. مزیت این سیستم ترکیب ایمنی و حفظ انحرافات مورد نظر می باشد. این سیستم و شکل 4 نشان داده شده است. سیستم انحراف شامل چندین شاخص می باشد که با المانهای فولادی ‌در ساختار به کار می رود. این المانهای فولادی همانند نعل اسب طراحی شده در لایه سوم به کار می روند، به شبکه شاخصهای موجر دور ساختار اتصال می یابد. هر یک از شاخصهای ساختار دارای طول m4/0 می باشند.


تأثیر اندازه تخم مرغ روی حرارت تولیدی و انتقال انرژی از تخم مرغ به جوجه ها

تخم مرغهای کوچک (گرم 120156) و بزرگ(11070) را در شرایط یکسان در دمای 837 درجه سانتی گراد خوابانده و سعی گردید که درجه حرارت پوسته تخم مرغ ثابت بماند ماده خشک، خاکستر، پروتئین، مقدار چربی در آلبو من، زرده ، لاشه بدون زرده (YFB) وبقایای زرده(RY) مقدار کربو هیدرات و میزان کالری آنها مورد محاسبه قرار گرفت
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 143 کیلو بایت
تعداد صفحات فایل 20
تأثیر اندازه تخم مرغ روی حرارت تولیدی و انتقال انرژی از تخم مرغ به جوجه ها

فروشنده فایل

کد کاربری 7169

چکیده:

تخم مرغهای کوچک (گرم 12/01/56) و بزرگ(11/070) را در شرایط یکسان در دمای 8/37 درجه سانتی گراد خوابانده و سعی گردید که درجه حرارت پوسته تخم مرغ ثابت بماند. ماده خشک، خاکستر، پروتئین، مقدار چربی در آلبو من، زرده ، لاشه بدون زرده (YFB) وبقایای زرده(RY) مقدار کربو هیدرات و میزان کالری آنها مورد محاسبه قرار گرفت.

برای داشتن دمای یکسان روی پوسته تخم مرغ ها در هر گروه ، بعد از 15 روزگی، میزان حرارت تولیدی تخم مرغ های درشت در مایسه با تخم مرغهای کوچک بیشتر بوده و دمای ماشین را در این گروه پایین تر تنظیم می کنیم. نتایج مصرف مواد مغذی نشان داد که میزان چربی بالا و مقدار پروتئین کمتر در بقایای کیسه زرده در جوجه های هچ شده از تخم مرغهای کوچک است. کسر تنفسی (RQ) در تخم مرغهای کوچک و بزرگ یکسان بوده و میزان انتقال انرژی از تخم مرغ به لاشه بدون زرده(YFB) در هر دو دسته از تخم مرغها یکسان است. نتایج نشان می دهد که وزن کیسه زرده در جوجه های حاصل از تخم مرغهای درشت در مقایسه با تخم مرغهای کوچک نسبتاً بالاتر است.


بررسی مراحل مختلف آزمایش خاک

در این آزمایش نمونة خاک در درون یک هستة فلزی و بین دو صفحة متخلخل قرار داده می‌شود و این حلقه در آب غوطه ور می گردد و بار بر نمونه اعمال می‌گردد تعیین در ارتفاع نمونه توسط یک عقربة مدرج اندازه گیری می‌شود و هر 24 ساعت یک با فشار روی نمونه 2 برابر می‌گردد سپس منحنی زمان متغیر برای بارگذاری‌های مختلف کشیده می‌شود از روی این منحنی‌ها می‌توان زمان تحک
دسته بندی عمران
فرمت فایل doc
حجم فایل 88 کیلو بایت
تعداد صفحات فایل 43
بررسی مراحل مختلف آزمایش خاک

فروشنده فایل

کد کاربری 8044

مراحل مختلف آزمایش خاک

آزمایش تحکیم :

هدف از انجام آزمایش تحکیم، تشخیص شدت و میزان نشت در خاک‌های رسی می‌باشد.

در این آزمایش نمونة خاک در درون یک هستة فلزی و بین دو صفحة متخلخل قرار داده می‌شود. و این حلقه در آب غوطه ور می گردد و بار بر نمونه اعمال می‌گردد. تعیین در ارتفاع نمونه توسط یک عقربة مدرج اندازه گیری می‌شود و هر 24 ساعت یک با فشار روی نمونه 2 برابر می‌گردد سپس منحنی زمان متغیر برای بارگذاری‌های مختلف کشیده می‌شود از روی این منحنی‌ها می‌توان زمان تحکیم و مقدار نشت خاکها را بدست آورد.

همچنین تغییرات تحکیم پوکی نمونه نسبت به فشار نیز بررسی می‌شود که در زیر آورده شده است.

روش انجام محاسبات

ارتفاع قسمت جامد نمونه قبل بارگذاری:

ارتفاع منافذ قبل از بارگذاری:

پوکی اولیه:

در اثر اولین افزایش بار تغییر شکل را خواهیم داشت، که تغییر پوکی از آن بدست می‌آید.

پوکی چدید را که بعد از افزایش بار ایجاد شد از فرمول زیر محاسبه می‌کنیم

این کار برای بارگذاری‌های بعدی نیز تکرار می‌شود. سپس نمودار P و پوکی به صورت یک منحنی بر روی کاغذ نیمه لگاریتمی رسم می‌شود.

وسایل آزمایش عبارت اند از:

1-دستگاه تحکیم 5- قوطی تعیین رطوبت

2- ترازو 6- اره سیمی

3- جک برای بیرون آوردن نمونه 7-کرنومتر

4- گرم خانه

این آزمایش برای نمونه‌های دست نخورده و خورده قابل انجام است. حلقة تحکیم را به کمک جک وارد نمونه می‌کنیم سپس سر و ته آن را با کمترین دست خوردگی صاف می‌کنیم و در محفظة تحکیم قرار می‌دهیم.

برای نمونه‌های دست خورده خاک را به حد روانی می‌رسانیم سپس آن را وارد محفظة تحکیم می کنیم.

انجام آزمایش:

بدلیل نبود زمان و اطلاعات تکمیلی بعدی، این آزمایش بطور کامل انجام نشد و تنها تحکیم نمونه در بار ثابت انجام شد که نتایج در زیر آمده است.


وزن حلقة تحکیم: gr 58/149 قطر حلقه:cm 2/7

وزن نمونه با حلقه: gr 78/290 ارتفاع نمونه: cm 4/2

زمان

قرائت گیج

25/0

014/0

001/0

87/0=

1

02/0

0015/0

869/0=

25/2

026/0

0020/0

868/0=

4

028/0

0021/0

867/0=

25/6

031/0

0024/0

867/0=

9

033/0

0025/0

867/0=


تراکم (Compaction)

هدف از انجام عملیات تراکم، کاهش میزان تخلخل خاک است. وجود آب تا میزان مشخصی، سبب تسهیل این عملیات می‌گردد. به دست آوردن این حد رطوبت و وزن مخصوص خشک بیشینه خاک پس از به کاربردن میزان معینی انرژی کوبشی، هدف مهم آزمایشی تراکم است.

در بسیاری از سازه‌های خاکی، مثل سدها، دیوارهای حائل، بزرگراه‌ها، فرودگاه‌ها، و … متراکم کردن خاک یک امر ضروری جهت بهبود مقاومت خاک می‌باشد. متراکم نمودن خاک که عبارت است از قرار دادن خاک در یک موقعیت چگالتر، به چند دلیل مطلوب است:

الف) کاهش نشست‌ها در آینده، ب) افزایش مقاومت برشی، ج) کاهش نفوذ پذیری د)بهبود خواص مکانیکی خاک، هـ) کاهش قابلیت تورم خاک.

در کارگاه برای تراکم خاک از غلتکهای چرخ استوانه‌ای صاف، غلتکهای پاچه بزی، غلتهای چرخ لاستیکی و غلتکهای ارتعاشی استفاده می شود. غلتکهای ارتعاشی برای تراکم خاکهای دانه‌ای مورد استفاده قرار می‌گیرند. تاثیر تراکم حاصل از دستگاه‌های فوق، محدود به اعماق 15 تا 30 سانتی‌متر سطحی است.

برای افزایش عمق نفوذ تراکم و تراکم کردن لایه‌های عمقی از تراکم ارتعاشی و تراکم دینامیکی استفاده می شود.


وسایل مورد نیاز برای آزمایش

وسایل خاص: وسیله متراکم کردن نمودن خاک

الف) قالب با in 6/4 (mm 115) عمق،in 4 (mm 100) قطر و (7/946) حجم

ب)حلقه متحرک دور قالب با in 5/2 (mm 5/62) عمق و in4 (mm 100) قطر.

ج) چکش با in2 (mm 50) قطر مقطع و 5/5 یا 10 پوند وزن و وسایل کنترل ارتفاع سقوط چکش

وسایل عمومی:

1- اسپری آبپاش، 2- الک شماره 4، 3- چکش لاستیکی، 4- پیمانه، 5- تا به بزرگ برای مخلوط کردن، 6- لبه نوک تیز یا چاقو به طور حداقل cm 25،

7- دورتراز و با حساسیت (Ib 01/0 و gr 01/0)، 8- آون، 9- خشک کننده،

10- قوطیهای خشک، 11- دستگاه خاک مخلوط کن، 12- وسیله‌ای برای بیرون

آوردن نمونه از قالب که از جک استفاده می‌شود.

روش انجام آزمایش:

که از دو تا الک in4 و in6 می‌شود استفاده کرد. که برای قالب in4 برای هر لایه 25 ضربه می‌زنیم با چکش 5/5 1پوند و برای قالب in6 با چکش یا (kg 5/2) 5/5 پوند برای سه لایه 56 ضربه می‌زنیم.

1- قالب خالی را همراه با ته آن و بدون حلقه دور قاب وزن می‌کنیم.

2- یک نمونه نماینده از خاکی که باید آزمایش شود. آماده می‌کنیم. همه کلوخه‌های خاک را در یک هان و توسط چکشی که سرآن لاستیکی است خرد می‌کنیم و از الک شماره 4 سرند می‌نماییم. که مقدار kg 7 از قالب in4 که رد شده را در هوای آزاد خشک باشد. به مقدار 5% آب به آن اضافه می‌کنیم.

3- با خاکی که از الک شماره 4 عبور کرده و به مقدار 5% آبی که به آن اضافه کرده در سه لایه تراکم به اندازه cm 5 تا 8 در قالب درست می‌کنیم.

4- به ملایمت خاک را فشار می‌دهیم تا سطح آن صاف شود و بعد با 25 ضربه یکنواخت و پخش شده در تمام سطح توسط ضربات چکش، خاک را متراکم می کنیم ارتفاع سقوط چکش را ft1 می‌گیریم. بین هر سقوط چکش، هم قالب و هم چکش باید به خاطر پخش یکنواخت ضربات در تمام سطح نمونه به آرامی چرخانده شود.

5- آزمایش را برای لایه‌های دوم و سوم تکرار می‌کنیم. ارتفاع سقوط چکش را ft1 بالاتر از سطح خاک مورد آزمایش تنظیم می‌کنیم. وقتی عمل متراکم کردن سومین لایه خاک را نیز به اتمام رساندیده دور سطح قالب را از زاویه خاک پاک می کنیم.

6- حلقه دور قالب را برمی‌داریم. در برداشتن حلقه دور قالب، آن را می‌چرخانیم تا اتصالی که بین حلقه و خاک ایجاد شده، قبل از آن که آن را از روی قالب برداریم جدا شود. این عمل باعث می‌شود به هنگام برداشتم حلقه از دور ستون قالب از جابجایی یا حرکت مقداری از خاک متراکم شده جلوگیری شود. عمل صاف کردن روی نمونه درون قالب می‌بایست توسط خراشیدن روی نمونه به وسیله خط کش لبه فلزی صورت می‌گیرد. عمل را از محور مرکزی شروع کرده، تا لبه‌های قالب کار را ادامه دهیم.

7- هنگامی که نمونه از نظر سطح بالایی آماده و تمام خاکهای شل از اطراف آن پاک گردیده سیلندر و نمونه را وزن می‌کنیم.

8- خاک را از درون سیلندر خارج کرده، یک نمونه نماینده را که دارای وزنی در حدود gr 100 است برای تعیین مقدار آب آن آماده می‌کنیم. مقدار آب باید از روی نمونه‌هایی که از قسمتهای بالا، وسط و ته خاک متراکم شده به دست آمده تعیین شود.

9- خاک را از داخل سیلندر خارج کرده با دست خرد می کنیم، آن را با نمونه اصلی آن دوباره مخلوط می‌کنیم و مقدار آب آن را تا حدود 3% با اضافه کردن آب به وسیله اسپری افزایش می دهیم. باید آب را به طور یکسان پخش کرده، خاک را کاملاً مخلوط کرده، با وزن کردن اسپری قبل و بعد از پاشیدن آب، می‌توانید مقدار آب اضافه شده را تخمین بزنیم. دانستن مقدار آب اضافه شده کمک می‌کند تا مقدار رطوبت را کنترل کنیم.

10- دوباره عمل متراکم کردن را تکرار می‌کنیم. هر بار مقدار آب را در حدود 3% افزایش می‌دهیم. 5 تا 6 بار این کار را انجام می‌دهیم و این عمل برای انجام آزمایش بستگی به نوع خاک دارد تا وقتی که خاک خیلی مرطوب و چسبنده شود که بر اثر اضافه کردن آب، وزن شروع به کم کردن شود.

که در مراحل انجام آزمایش، از یک نمونه یکسان خاک برای به دست آوردن مقادیر چگالی – در صد آب استفاده شده است. آب در هر مرحله اضافه شده، عمل تراکم بلافاصله انجام می‌شود.

نکات مهم در انجام آزمایش تراکم

1- بهتر است چند بار آزمایش تکرار شود و نقطه بهینه را یافت و متوسط آن را قبول کرد و در عین حال باید توجه داشت که بهتر است در هر سری ازمایش از خاک تازه استفاده شود.

2- در هنگام ضربه زدن نباید قالب ارتعاش داشته باشد چرا که انرژی چکش هدر می‌رود.

3- ضخامت لایه‌ها می‌بایست یکسان باشند و گرنه انرژی تراکم به طور یکنواخت بین لایه‌ها پخش نمی‌شود و در عین حال لایه‌های ضخیم‌تر کمتر کوبیده می‌شوند.

4- بهتر است نمونه در ابتداء خشک باشد، مگر اینکه که با داشتن محدود تغییرات درصد رطوبت بهینه، برای شروع کار درصد رطوبتی کمتر از رطوبت بهینه به آن اضافه شود.

محاسبات

W: وزن کل خاک متراکم شده مرطوب در استوانه ( سیلندر )

V: حجم قالب

W: درصد آب موجود در هاک متراکم شده.

از نظر تئوری، مطلوب آن است که به منحنی حفره‌های هوای صفر برسیم ( به خط اشباع ) که در حالت حفره‌های هوای صفر، نمونه بار رطوبت موجود، در حالت اشباع است.

Gs : وزن مخصوص خاک

Sr: درجه اشباع

W: درصد رطوبت خاک

: چگالی آب

برای رسم منحنی چگالی خشک – درصد رطوبت، بر روی محور افقی درصد آب و بر روی محور قائم، چگالی خشک را در نظر می‌گیریم. منحنی را می‌توان با داشتن نقاط تجربی به دست آمده از آزمایش رسم کرد.

برای رسم منحنی اشباع (منحنی هوا صفحه) نیز کافی است در رابطه اخیر مقدار Sr را برابر 100% قرار دهیم آنگاه نقاط بدست آمده را روی همان محورهای مختصات قبلی (در کنار نمودار چگالی خشک – درصد رطوبت) رسم می‌نمایم.

R: تراکم نسبی

برای خاکهای دانه‌ای

Dr : چگالی نسبی تراکم

که یک نمونه از آزمایش انجام شده تراکم به پیوست ارائه می‌گردد.

که حجم قالب را از رابطه زیر محاسبه می‌کنیم. شعاع

D: قطعه قالب (استوانه) mm 152D=

h: ارتفاع قالب (استوانه) 43/116h=

که هدف این آزمایش که روی محور x ها و روی محور yها %w

آزمایش تعیین حد روانی:

حد روانی خاک میزان رطوبتی می‌باشد که خاک با رطوبتهای بیش از آن از حالت خمیر به حالت مایع تبدیل می‌شود. از این حد می‌توان برای توصیف مقاومت خاک ریز دانه استفاده کرد. تغییر در مقاومت خاک در اثر جذب آب مربوط به میزان رس موجود در آن می‌باشد.

حد روانی خاک توسط دستگاه کاسا گرانده‌ اندازگیری می‌شود توسط این دستگاه به خاک ضرباتی وارد می‌شود هر ضربه معادل می‌باشد.

در آزمایشگاه حد روانی میزان رطوبتی است که در آن رطوبت شیار ایجاد شده در خاک در اثر 25 ضربه بسته شود بنابراین می‌توان گفت حد مایع برای خاکهای ریزدانه، میزان رطوبتی را بدست می‌دهد. که مقاومت برشی به ازای آن تقریباً مساوی است.

انجام آزمایش:

وسایل آزمایش عبارتند از:

دستگاه حد روانی کاساگرانده

شیار زن

کاردک

ظرف نمونه‌گیری

خشک کن «‌ OVEN»

ترازو

برای تنطیم دستگاه صفحة میزان را در زیر کاسه قرار می‌دهیم و ارتفاع کاسه را طوری تنظیم می‌کنیم که تقریباً‌ بر روی صفحة تنظیم قرار گیرد.

سرعت چرخاندن اهرم دستگاه باید طوری باشد که در هر 1 ثانیه 2 ضربه وارد شود ارتفاع سقوط را این دستگاه Tomm می‌باشد و عمق شیارزن mm 8 می‌باشد.

حدود 250 گرم خاکی را که از الک 40 عبور کرده و 24ساعت با آب مرطوب شده است تهیه می‌کنیم میزان آب باید طوری باشد که خاک به حالت خمیر درآید. مقداری از خاک را در ظرف به کمک کاردی پهن می‌کنیم.

سپس توسط شیارزن شکافی در وسط آن ایجاد می‌کنیم و تعداد ضربات لازم برای دسته شدن شیار را یادادشت می کنیم این کار را برای سه نمونه از خاک انجام می‌دهیم میزان رطوبت باید طوری باشد که در آزمایش اول تعداد ضربات بین 15-20 و در آزمایش دوم بین 20-25 و در آزمایش سوم بین 25-35 باشد. سپس طبق محاسبات زیر درصد رطوبت را محاسبه کرده و نمودار رطوبت در برابر تعداد ضربات را رسم می‌کنیم و خطی را که از نقاط بدست آمده عبور می‌کند. رسم می‌کنیم سپس از روی نمودار میزان رطوبت مربوط به تعداد 25 ضربه را بدست می‌آوریم.

همچنین می‌توان با استفاده از روش تک صفحه‌ای مقدار LL را بدست آورد. ولی این روش فقط تعداد ضربات بین 20تا 30 جواب خوبی می‌دهد چون دامنة تغییرات رطوبت برای 20N = تا 30N = کم است.

شیب خط حاصل از رسم نمودار نسبتاً جریان یا If نامیده می‌شود.


دانلود مقاله پودر شفیره کرم ابریشم – یک ماده غذایی غیر متداول

پودر شفیره کرم ابریشم یک خوراک پروتئینی غیرمتداول برای حیوانات بوده که به‎عنوان یک محصول فرعی پس از جدا کردن رشته‎های ابریشم از پیله بدست می‎آید همانطور که در تحقیقات نشان‎داده شده، به نظر می‎رسد که ارزش‎غذایی آن محدود باشد
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 14 کیلو بایت
تعداد صفحات فایل 7
دانلود مقاله پودر شفیره کرم ابریشم – یک ماده غذایی غیر متداول

فروشنده فایل

کد کاربری 7169

پودر شفیره کرم ابریشم یک خوراک پروتئینی غیرمتداول برای حیوانات بوده که به‎عنوان یک محصول فرعی پس از جدا کردن رشته‎های ابریشم از پیله بدست می‎آید. همانطور که در تحقیقات نشان‎داده شده، به نظر می‎رسد که ارزش‎غذایی آن محدود باشد.

منشاء اولیه پرورش کرم ابریشم کشور چین بوده و بیش از 5000 سال قدمت دارد. کشورهای اصلی تولیدکننده ابریشم شامل چین(5/57% از تولید جهانی)، ژاپن(2/13%)، هند(3/10)، کره جنوبی(4/5%) و تایلند(1/2%) می‎باشد.

معمول‎ترین گونه برای تولید تجاری ابریشم، کرم ابریشم درخت توت یا Bmbyx mori از زیر شاخه جانوران بند پا یا Tracheata است. کرم پروانه ابریشم عمدتاً از برگ‎های درخت توت تغذیه می‎کند. توت سفید یا Morus alba از خانواده Moraceae متداول‎ترین نوع درخت توت در کشور ژاپن است. این خانواده شامل بیش از هزار گونه می‎باشد.

قبل از باز شدن رشته‎های ابریشم، پیله را حرارت می‎دهند تا شفیره آن کشته شود. از یک پیله ابریشم حدود 800 متر نخ رشته‎ای با ملکول‎های کشیده و لیفی‎شکل بدست می‎آید. پس از جدا شدن نخ ابریشم، شفیره باقیمانده خشک و سپس آسیا می‎شود. می‎توان با استفاده از یک مایع حلال چربی آنرا استخراج نمود. پیله‎های کرم ابریشم هیچ ارزش غذایی ندارند.

مشخصات پودر شفیره کرم ابریشم

محتوای پروتئین خام پودر شفیره کرم ابریشم(SPM)1 بسیار متفاوت است. در پودر‎هایی که روغن آنها گرفته شده، نسبت به پودر‎های فرآوری نشده میزان پروتئین خام بیشتر بوده(به‎ترتیب 8/72% و 1/55%) و قابل مقایسه با پودر ماهی با کیفیت خوب است(جدول 1). به‎دلیل وجود اسیدهای آمینه لیزین2، متیونین3، آرژنین4، هیستیدین5 و ترئونین6 که اسیدهای آمینه محدود کننده‎ای هستند، پروتئین پودر کرم ابریشم ارزش بالایی ندارد(جدول 2). ضریب اسیدهای آمینه ضروری و ارزش بیولوژیکی آن به ترتیب 3/61% و 6/51% است.

جدول 1- ترکیب شیمیایی پودر شفیره کرم ابریشم در مقایسه با پودر ماهی و کنجاله سویا(% ماده خشک)

پودر خام

پودر بدون روغن

پودر ماهی(سفید)

کنجاله سویا

ماده خشک

9/88

9/91

0/91

0/90

پروتئین خام

1/55

8/72

2/68

9/49

چربی خام

2/23

0/2

1/5

4/1

خاکستر

8/3

6/5

4/25

0/7

فیبر خام

5/5

2/6

8/0

5/6


دانلود مقاله پرورش و پرواربندی دام

در جامعه امروز نیاز به گوشت قرمز با توجه به نیاز انسان و شهر نشینی و همچنین رشد جمعیت جهان یک مسئله انکار ناپذیر است با توجه به اینکه کشور ما از نظر تولید این محصول در سطح ضعیف می باشد ، می توان با استفاده از علم و به کار بستن آن با عمل تولید را به سطح خودکفایی و صادرات رساند
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 108 کیلو بایت
تعداد صفحات فایل 19
دانلود مقاله پرورش و پرواربندی دام

فروشنده فایل

کد کاربری 7169

پرورش و پرواربندی دام

مقدمه :

در جامعه امروز نیاز به گوشت قرمز با توجه به نیاز انسان و شهر نشینی و همچنین رشد جمعیت جهان یک مسئله انکار ناپذیر است . با توجه به اینکه کشور ما از نظر تولید این محصول در سطح ضعیف می باشد ، می توان با استفاده از علم و به کار بستن آن با عمل تولید را به سطح خودکفایی و صادرات رساند .

از آنجا که جمعی از دوستان و مشتاقان علم برای اینجانب پیام گذاردند که این پست را کامل کنم ، من را بر این داشت که در رابطه با روشهای پرواربندی در ایران مطالب کامل و مفیدی که با کمک دوست عزیزم آقای علیرضا احمدی مقدم جمع آوری نمودم در اختیار گذارده تا دوستان از آن استفاده نمایند .

جدول زیر نشان دهنده تولید محصولات دامی و سرانه مصرف در کشور در سالهای مختلف را نشان می دهد .

اهمیت پرواربندی دارای دو جنبه می باشد :

1 – پروار بندی صنعتی

2 – پرواربندی سنتی

در پرواربندی صنعتی دامهای نر جوان مورد پروار قرار می گیرند که با توجه به اینکه در سن و وزن مناسب کشتار می شوند باعث افزایش عملکرد می شود .

اما پروار بندی سنتی خود بر دو نوع می باشد :

الف) کشتار بره ها و گوساله های کم سن و سال ، که این کار توصیه نمی شود .

ب ) پروار دامهای حذفی + ماده های غیر جایگزین ، که این روش نیز به خاطر اینکه فقط ذخیره چربی می باشد و باعث اتلاف منابع بی جهت می شود توصیه نمی شود .


دانلود مقاله پرورش ملکه زنبور عسل

زنبور عسل شاید تنها حشره اهلی جهان باشد که انسان نتواسته است در نوع زندگی آن تغییری ایجاد کند زنبور عسل به صورت اجتماعی زندگی می کند هر یک از اجتماعات زنبور عسل در محیطی بسته به نام کندو به سر می برند و افراد ساکن در هر کندو همچون جوامع بشری به طبقاتی تقسیم می شوند و هر طبقه انجام وظایف خاصی را به عهده دارد
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 31 کیلو بایت
تعداد صفحات فایل 15
دانلود مقاله پرورش ملکه زنبور عسل

فروشنده فایل

کد کاربری 7169

مقدمه

زنبور عسل شاید تنها حشره اهلی جهان باشد که انسان نتواسته است در نوع زندگی آن تغییری ایجاد کند زنبور عسل به صورت اجتماعی زندگی می کند. هر یک از اجتماعات زنبور عسل در محیطی بسته به نام کندو به سر می برند و افراد ساکن در هر کندو همچون جوامع بشری به طبقاتی تقسیم می شوند و هر طبقه انجام وظایف خاصی را به عهده دارد.

کارگران زنبوران ماده ای هستند که در اثر تغذیه خاص در مراحل نوزادی و شفیره ای که به وسیله کارگران بالغ اعمال می شود دارای دستگاه تولید مثل با رشد ناقص هستند. کارگران تمامی کارهای داخل و خارج کندو را بر عهده دارند از قبیل جمع آوری غذا، پرورش نوزاد، محافظت و نگهبانی کندو در مقابل مهاجمین، نظافت، ساختن شان و ...

زنبوران نر تنها افراد ذکور کلنی هستند وکاری جز بارور کردن ملکه ندارند. غذای این زنبوران بوسیله کارگران داده می شود.

ملکه زنبور ماده ای است با دستگاه تناسی کاملا تکامل یافته که به عنوان یک ماشین تخم گذاری انجام وظیفه می کند و ژنوتیپ او ژنوتیپ همه افراد کلنی را تا حد زیادی مشخص می کند. ملکه ها به تنهایی قادر به تشکیل کلنی و حتی تغذیه خود نیستند. زنبوران عسل در تغلیظ شهد مهارت زیادی دارند و این عمل را به قدری دقیق انجام می دهند که شهد تغلیظ شده (عسل) غیر قابل فساد می شود، زنبوران عسل حجره های پر شده از شهد تغلیظ شده را بالایه ای از موم می پوشانند تا از هر نوع آلودگی درامان بمانند و در زمان نیاز بتوانند ازعسل ذخیره شده استفاده کنند. البته برخلاف تصور عموم که سودآوری اقتصادی زنبور عسل را فقط در تولیدات مستقیم آ ن جستجو می کنند، باید اذعان نمود که تولیداتی نظیر عسل، موم، ژله شاهانه و گرده در مقایسه باسود آوری زنبور عسل از جنبه گرده افشانی قابل مقایسه نبوده و تولیدات ذکر شده حداکثر 20% ارزش اقتصادی زنبور را شامل می شوند و 80% درصد سودآوری زنبور عسل مربوط به گرده افشانی گیاهان گلدار برای بدست آوردن محصولی خوب و مرغوب از محصولاتی نظیر درختان میوه، آفتابگردان، سویا، کلزا و ... است. همچنین در بذرگیری از گیاهان علوفه ای دگرگشن مانند یونجه، اسپرس وانواع شبدرها وجود زنبور عسل کاملا ضروری است.


دانلود مقاله پرورش گوسفند

علی رغم وجود تعداد زیادی عناصر معدنی مختلف فقط 15 عنصر از نظر تغذیه حیوانات ضروری می باشند عناصر معدنی که نقش آن ها در متابولیسم بدن مشخص شده است
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 28 کیلو بایت
تعداد صفحات فایل 23
دانلود مقاله پرورش گوسفند

فروشنده فایل

کد کاربری 7169

مواد معدنی

علی رغم وجود تعداد زیادی عناصر معدنی مختلف فقط 15 عنصر از نظر تغذیه حیوانات ضروری می باشند . عناصر معدنی که نقش آن ها در متابولیسم بدن مشخص شده است ، عناصر معدنی ضروری نامیده می شوند . بنابراین احتمال اینکه در آینده برخی عناصر معدنی دیگر ضروری تشخیص داده شوند وجود دارد . براساس میزان تراکم عناصر معدنی ضروری در بدن حیوان و یا مقدار مورد نیاز آن ها در جیره غذایی به دو گروه پر مصرف و کم مصرف تقسیم می شوند :

عناصر پر مصرف : مقدار این عناصر بیش از 50 میلی گرم در کیلو گرم وزن بدن است و شامل کلسیم ، فسفر ، پتاسیم ، سدیم ، کلر ، گوگرد و منیزیم می باشند که در مجموع 69 درصد از عناصر معدنی بدن (خاکستر ) را تشکیل می دهند .

عناصر کم مصرف : مقدار این عناصر در هر کیلوگرم وزن بدن در حالت طبیعی کمتر از 50 میلی گرم می باشد و شامل آهن ، روی ، مس ، مولیبدن ، سلنیوم ، ید ، منگز و کبالت بوده و مجموعا 15 درصد مواد معدنی بدن را تشکیل می دهند .

محل اصلی ذخیره مواد معدنی ، پلاسمای خون و بافت های بدن می باشد . اگر حیوان برای مدتی با جیره های نامتعادل از نظر مواد معدنی (کم یا زیاد ) تغذیه شود ، مقدار آن ها در بدن تغییر می کند که زیاد شدن آن ها سبب مسمومیت و کاهش آن ها سبب پیدایش علائم کمبود می شود .

مهمترین عوامل موثر بر احتیاجات گوسفند و بز از نظر مواد معدنی عبارت از میزان و نوع تولید ، سطح غذای مصرفی، ترکیب شیمیایی عنصر معدنی ، فعالیت فیزیولوژیکی و هورمونی ، مرحله زندگی (حیوان شیرده ، آبستن ، خشک ، پرواری ) آب و هوا ، سن ، جنس ، نژاد ، ناحیه پرورش و نسبت عناصر معدنی دیگر در جیره می باشد . به دلیل وجود عوامل فوق ممکن است یک میزان معین از مواد معدنی در یک شرایط بخصوص سبب کمبود در دامها و در شرایط دیگر سبب مسمومیت آن ها شود . لذا تعادل مواد معدنی در جیره غذایی مصرفی و یا ارزیابی میزان مواد معدنی در علوفه های مراتع برای اطمینان از مقادیر کافی این عناصر باید مورد توجه قرار گیرد . در مورد نقش هر یک از این عناصر به طور مختصر مطالبی به شرح زیر توضیح داده می شود .

کلسیم

در بین مواد معدنی موجود در بدن ، بیشترین میزان مربوط به کلسیم است و 99 درصد آن در ساختمان استخوآنها و دندانها و یک درصد آن در مایعات و بافت های بدن وجود دارد . ظهور علائم کمبود کلسیم کند و بطئی می باشد . زیرا بدن از کلسیم ذخیره شده در استخوان ها استفاده می نماید . اگر میزان کلسیم از 9 میلی گرم در 100 سانتی متر مکعب پلاسمای خون کمتر شود ، از علائم کمبود مزمن است . لذا برای جلوگیری از کمبود نباید درصد کلسیم علوفه مورد استفاده گوسفند از 32/0 – 24/0 درصد کمتر باشد . در بره های پرواری که بیشتر جیره غذائی آن ها را دانه غلات تشکیل می دهد ممکن است دو عرضه مختلف یعنی ایجاد سنگ در مجاری ادراری (به دلیل عدم رعایت نسبت بین کلسیم و فسفر ) و کزاز دیده شود . لذا در جیره های غنی از دانه های غلات باید از مکمل های کلسیم استفاده نمود . همچنین بیماری زایمان (فلجی پس از زایمان یا تب شیر ) به علت کاهش شدید کلسیم بدن گوسفند و بز می باشد . دامهای مبتلا به این عارضه برای مدت 48-4 ساعت حرکات ناهماهنگ ، لرزش عضلانی و تنفس سریع نشان می دهند .همچنین سر به طرف زمین خم شده و پاهای عقب از هم باز می شود و دام فبج می گردد . در نهایت زبان دام بیرون آمده ، ضربان نبض بسیار تند و ضعیف ، ضربان قلب نامنظم ، نفخ شدید و دام بیهوش می شود . اگر حیوان در این حالت درمان نشود پس از 14-12 ساعت تلف می شود . بیشتر محققان کاهش شدید کلسیم خون را در هنگام زایمان به علت کاهش جذب کلسیم از روده و عدم استفاده از کلسیم ذخیره موجود در بدن می دانند . اگر چه دلایل زیادی برای این کاهش وجود دارد ولی استفاده مقادیر زیاد جیره های غنی از کلسیم (نظیر یونجه خشک ) در روزهای قبل از زایمان یک عامل مهم آن می باشد . زیرا مصرف مقادیر زیاد کلسیم از طریق جیره غذایی سبب کاهش فعالیت غدد درون ریز (نظیر هیپوفیز ، فوق کلیوی و پاراتیروئید ) شده و آزاد شدن کلسیم ذخیره را دچار اختلال می نماید . خروج مقادیر زیاد کلسیم از طریق شیر و کاهش کلسیم جیره نیز از عوامل تشدید کننده این عارضه می باشند .


دانلود مقاله پرورش گوساله

مراقبت از گوساله بعد از تولد در حالت طبیعی فرورفتگی بیش از حد دنده یا خرخر کردن نباید وجود داشته باشد سعی کنید مایعات مخاطی را از دهان و سیستم تنفسی گوساله خارج کنید در موارد سخت زایی لازم است گوساله را روی یک میله از پا به پایین آویزان کنید تا مواد مخاطی وارد شده به گلو خارج شوند
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 17 کیلو بایت
تعداد صفحات فایل 17
دانلود مقاله پرورش گوساله

فروشنده فایل

کد کاربری 7169

مراقبت از گوساله بعد از تولد

کنترل تنفس:

بعد از خروج گوساله وضعیت تنفس آن را کنترل کنید ( تحریک سوراخ بینی با یک تکه کاه باعث تحریک تنفس خواهد شد.)

در حالت طبیعی فرورفتگی بیش از حد دنده یا خرخر کردن نباید وجود داشته باشد.

سعی کنید مایعات مخاطی را از دهان و سیستم تنفسی گوساله خارج کنید.

در موارد سخت زایی لازم است گوساله را روی یک میله از پا به پایین آویزان کنید تا مواد مخاطی وارد شده به گلو خارج شوند.

خشک کردن گوساله:

? برای خشک شدن گوساله را مدتی در کنار مادر قرار دهید این کار علاوه بر خشک شدن گوساله، در به جریان انداختن خون در بدن گوساله بسیار اهمیت دارد. مگر اینکه که گاو شما مبتلا به بیماری باشد و احتمال انتقال آن از طریق لیسیدن به گوساله وجود داشته باشد ( مانند یون) . بنابراین در این مورد با دامپزشک خود مشورت کنید.

? اگر به هر دلیلی این کار توسط مادر انجام نمی شود، گوساله را با یک حوله خشک و تمیز خشک کنید.

ضدعفونی بند ناف:

? برای جلوگیری از عفونت بند ناف ، بلافاصله بعد از تولد بند ناف را در مایع ضدعفونی مناسب ( محلول ید 7% ) فروبرید .

? از بستن و گره زدن بند ناف خودداری کنید.

? کار ضدعفونی را همراه با هر بار خوراندن آغوز تکرار کنید به این ترتیب بند ناف بطور طبیعی خشک شده و خواهد افتاد.

خوراندن آغوز:

? ماک ( آغوز) چیست؟ ماک یا آغوز اولین ترشح غده پستانی بعد از تولد است و منبع سرشاری از پروتئین ، عناصر معدنی و آنتی بادی ها بشمار می رود. مواد جامد آغوز تقریباً 2 برابر شیر معمولی است که بیشتر به بخش پروتئینی آن مربوط می باشد. این ماده مغذی معمولاً تا 6 دوشش اول بعد از تولد از پستان خارج می شود اما رفته رفته از مقدار مواد ایمنی زای آن کاسته می شود و ترکیبات آن به ترکیبات شیر کامل تبدیل می شود. طوری که میزان گلوبولینهای ایمنی در دوشش دوم و سوم نسبت به دوشش اول به ترتیب 30 و 70 درصد کاهش می یابد.

? گوساله بر خلاف نوزاد انسان ایمینوگلبولینها را از طریق جفت ( درشکم مادر ) دریافت نمی کند ولی در عوض اولین شیر گاو یا ماک حاوی گلبولینها ی ایمنی زا و بسیاری از موا د مغذی است که باید هر چه سریعتر توسط گوساله مصرف شود.

? ایمونوگلبولینها مولکولهای پروتئینی بزرگی هستند که در گوساله ایجاد مصونیت در برابر بیماریهای مختلف می کند.

? بلافاصله بعد از تولد گوساله در دیواره روده گوساله منافذ بزرگی وجود دارد که به او قدرت جذب این مولکولهای بزرگ را بدون هضم می دهد.

مقایسه ترکیبات شیر در روزهای بعد از زایش با شیر کامل

ترکیبات


دانلود مقاله پرورش گاو

اهمیت پرورش نژادهای ممتاز گاو از نظر افزایش شیر و گوشت از دیرزمان مورد توجه بشر قرار داشته است تا آنجا که در تواریخ منقول است بعد از میلاد مسیح ایتالیائیها ضمن تبادل تجارت با چین و رونق کشتیرانی تعدادی گاو گوشتی عظیم الجثه از چین وارد کرده و در ایتالیا به نام CHIANINA پرورش داده اند در اثر جنگاهای صلیبی نیز نقل و انتقالات دیگری بین کشورهای داخل
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 14 کیلو بایت
تعداد صفحات فایل 18
دانلود مقاله پرورش گاو

فروشنده فایل

کد کاربری 7169

پرورش گاو اصیل شیرده

کلیات پرورش گاو

تاریخچه

بشر اولیه که سالیان درازی را به صورت بدوی از میوه درختان و شکار حیوانات امرار معاش می نمود رفته رفته درصدد برآمد برای مواقعی که دسترسی بشکار نداشت حیواناتی را که مفید تر و مطیع تر تشخیص داده بود به تدریج رام و اهلی نماید . کم کم در اثر تماس مداومی که بدین طریق با گاو ، بز و میش کوهی حاصل کرد علاوه بر فوائد گوشت از مزایای شیر هم برخوردار شد و پس از قرون متمادی هنگامی که شهرنشین شد در گوشه خانه و کاشانه ای که برای خود می ساخت جای مخصوصی هم برای نگهداری گاو ترتیب می داد. به عقیده مارشاک اهلی کردن حیوانات 8 هزار سال قبل از میلاد مسیح ابتدا در خاور میانه انجام شده است .

آمار گاو

آمار گاو و سایر دامها بعلت کشتار و عوامل مختلف دیگر متغیر است . در کشور هندوستان بعلت قیود مذهبی ذبح گاو قدغن بوده و در حال حاضر نیز نزدیک به 200 میلیون راس گاو نگهداری می شود که قسمت اعظم آنها پیر و فرتوت بوده وتا فرارسیدن مرگ طبیعی بحیات خود ادامه خواهند داد .

نژاد های معروف گاو

اهمیت پرورش نژادهای ممتاز گاو از نظر افزایش شیر و گوشت از دیرزمان مورد توجه بشر قرار داشته است . تا آنجا که در تواریخ منقول است بعد از میلاد مسیح ایتالیائیها ضمن تبادل تجارت با چین و رونق کشتیرانی تعدادی گاو گوشتی عظیم الجثه از چین وارد کرده و در ایتالیا به نام CHIANINA پرورش داده اند . در اثر جنگاهای صلیبی نیز نقل و انتقالات دیگری بین کشورهای داخلی اروپائی بعمل آمد . پس از کشف آمریکا و استرالیا صادرات گاو از اروپا از یک طرف و از هندوستان و آفریقا از طرف دیگر در آمریکا و استرالیا توسعه یافته و مطالعات دانشمندان درباره نژادهای گوشتی و شیری و آمیخته گری آنها وارد مراحل نوینی گردید.

کشت علوفه مصرفی دامپروریها

تاسیس دامپروری بویژه پرورش گاو اصیل شیری و گوشتی بدون داشن زمین علوفه کاری و یا مرتع به هیچ وجه مقرون بصرفه نمی باشد . با وجود اینکه خاک کره ارض در اثر ازدیاد جمعیت بشر روزبروز کوچکتر از پیش به نظر می رسد و ایجاد شهرها و صنایع عظیم احتیاج به زمین بیشتری دارد معذالک در غالب کشورها سعی می شود که از زمین های کشاورزی کسر نشده و با تکنولوژی صحیح از هر متر مربع زمین بهره برداری بیشتری به عمل آید .

مواد متشکله گیاهان علوفه ای


دانلود مقاله پرورش طیور گوشتی

گوشت طیور به عنوان یک منبع غنی پروتئین در سال های اخیر به طور وسیعی در تغذیه انسان در دنیا و در کشور ما مورد استفاده قرار گرفته است به طوری که در بعضی از کشورها که از نظر شرایط طبیعی و کمبود مرتع دچار مضیقه هستند گوشت طیور به سرعت جانشین گوشت دام های دیگر شده است
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 17 کیلو بایت
تعداد صفحات فایل 16
دانلود مقاله پرورش طیور گوشتی

فروشنده فایل

کد کاربری 7169

اهمیت گوشت طیور در تغذیه انسان

گوشت طیور به عنوان یک منبع غنی پروتئین در سال های اخیر به طور وسیعی در تغذیه انسان در دنیا و در کشور ما مورد استفاده قرار گرفته است به طوری که در بعضی از کشورها که از نظر شرایط طبیعی و کمبود مرتع دچار مضیقه هستند گوشت طیور به سرعت جانشین گوشت دام های دیگر شده است.

ارزش غذایی گوشت مرغ: می دانیم که منظور اصلی استفاده از گوشت در جیره های غذایی انسان تامین پروتئین مورد نیاز بدن است.

طبقه بندی گوشت طیور

پرندگانی که برای تولید گوشت پرورش داده می شوند عبارتند از انواع مرغ، بوقلمون، غاز، اردک، و اخیرا بلدرچین قسمت اعظم فعالیت برای تولید گوشت در پرندگان در روی مرغ متمرکز شده اند و بعد از آن به ترتیب، بوقلمون، اردک و غاز قرار گرفته است. در سال های اخیر به علت اصلاح نژاد و کارهای ژنتیکی که از نظر بهبود کمیت و کیفیت گوشت مرغ انجام گرفته است نژادها و نوع تیپ های مختلفی بسته به سلیقه بازار بوجود آمده است که هر نوع دارای اختصاصات بخود می باشد از این رو امروزه در بازارهای دنیا و ایران انواع مختلف گوشت مرغ وجود دارد.


تاریخچه

وضعیت تولید مواد غذایی در دنیای امروز بخصوص در کشورهای جهان سوم یکی از مسائل بغرنج اجتماعی به شمار می رود و طبق پیش بینی این مسئله در آینده نزدیک تولید اشکالات و تنش های اجتماعی بیشتری خواهد بود زیرا روز به روز به ویژه در کشورهای فقیر و عقب مانده افزوده می گردد.

طبق مطالعات تاریخی جمعیت کره زمین در 4 هزار سال قبل از میلاد مسیح در حدود 30 میلیون نفر بوده است (20/1 جمعیت فعلی هندوستان) و 1000 سال قبل از میلاد به 200 میلیون نفر رسید، این جمعیت با افزایش ملایم به مرور بیشتر شد، به طوری که در سال 1600 میلادی به 500 میلیون و در سال 1825 به یک میلیارد نفر بالغ گردید. از اوائل قرن بیستم افزایش جمعیت جهان به نحو چشمگیری افزایش یافت به طوری که در سال 1980 به رقمی در حدود 5/4 میلیارد نفر رسید. این روند رشد جمعیت در دنیا هم چنان با سرعت ادامه دارد به طوری که هم اکنون در هر ساعت 8700 نفر به جمعیت دنیا اضافه می گردد بدین ترتیب به طوری که پیش بینی می شود در سال 2000 سال جمعیت دنیا به رقمی بین 6 – 7 میلیارد نفر بالغ خواهد شد. از سوی دیگر به علت بهبود بهداشت و روش های پیشگیری از بیماری در سال های اخیر درصد تلفات و مرگ و میر به حد قابل توجهی کاهش یافته است و حد متوسط عمر در کشورهای مختلف افزایش پیدا نموده است به عنوان مثال در 200 سال قبل حد متوسط سن انسان 33 سال بود حال آن که در عصر حاضر در بیشتر کشورهای اروپایی عمر متوسط بشر به حدود 70 سال رسیده است. متاسفانه بیشترین افزایش جمعیت دنیا در نقاطی است که از نظر مواد غذایی در کمبود و فقر هستند و امکانات افزایش تولید مواد غذایی به تناسب افزایش جمعیت در آن ها وجود ندارد از این رو کم غذایی در این گونه جوامع به مرور تبدیل به گرسنگی و مرگ و میر دسته جمعی شده است.


دانلود مقاله پرورش طیور

قسمت عمده ای از هزینه های سرمایه گذاری واحد پرورش طیور سرف تهیه جایگاه نگهداری می شود و در صورتی که به این موضوع اهمیت داده نشود ممکن است بر روی طیور که حیوان آسیب پذیر هستند آثار نامطلوبی بگذارد، در پرورش طیور گوشتی به علت که پرندگان حساس و در حال رشد هستندبروز هر گونه مشکل محیطی ناشی از سهل انگاری در ساختمان می تواند منجر به ایجاد استرس، کاهش
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 26 کیلو بایت
تعداد صفحات فایل 20
دانلود مقاله پرورش طیور

فروشنده فایل

کد کاربری 7169

قسمت عمده ای از هزینه های سرمایه گذاری واحد پرورش طیور سرف تهیه جایگاه نگهداری می شود و در صورتی که به این موضوع اهمیت داده نشود ممکن است بر روی طیور که حیوان آسیب پذیر هستند آثار نامطلوبی بگذارد، در پرورش طیور گوشتی به علت که پرندگان حساس و در حال رشد هستند، بروز هر گونه مشکل محیطی ناشی از سهل انگاری در ساختمان می تواند منجر به ایجاد استرس، کاهش تولید، تلفات و شیوع بیماری ها شود و صدمه های جبران ناپذیری را به واحد فوق وارد کند.

این واحد پرورش طیور گوشتی در قسمت جنوب شرقی کشور قرار دارد و این منطقه، منطقه ای است گرمسیر محسوب می شود و باید برای ساخت سالن باید نکاتی مورد توجه قرار گیرد که شامل:

1- بررسی وضعیت اقتصادی منطقه و امکان فروش محصولات آن

2- نوع پرنده پرورشی، نحوه پرورش و ظرفی واحد پرورش طیور.

3- وجود راه مطلوب برای حمل و نقل نهادهای مورد نیاز و امکان رساندن محصول تولیدی به بازار مصرف.

4- امکان تامین کارگر ماهر و افراد متخصص.

5- بررسی امکان مکانیزاسیون و افراد متخصص.

6- رعایت فاصله مجاز بین واحد پرورش و منطقه های مسکونی، منابع آلودگی و سایر واحدهای دامپروری.

7- استفاده از مصالح ساختمانی ارزان قیمت و با کیفیت و کارآیی مطلوب و همچنین امکان گسترش واحد پرورش طیور در آینده و در هر امکان که در این ارتباط تاسیسات زیربنای مثل راه، فاضلات و منابع تامین آب، برق، کارگر و غیره باید مدنظر قرار گیرد.

8- مجوز مکانی لازم از اداره ها و ارگان های مربوط دریافت شود و با رعایت اصول علمی محاسبه های اقتصادی و سوددهی صورت گیرد.

9- در خصوص انتخاب محل واحد پرورش طیور نکات زیر توجه باید بشود:

1) زمین ارزان قیمت و نزدیک به شهر یا مراکز مصرف باشد.

2) زمین از نظر ساختمانی خاکی یا شنی و دور از مسیر سیل، طوفان، باد و غیره باشد.

3) جهت ساختمانی در مناطق گرمسیر باید شمالی و یا شرقی باشد.

4) برای حمل مواد مصرفی به واحد پرورش طیور و انتقال تولیدات و ضایعات باید راه مناسب موجود باشد، اما تاسیس واحد پرورش طیور در کنار و یا نزدیک خطوط راه آهن، جاده های اصلی فرودگاه، و محل های پر سر و صدا مناسب نیست.

5) محل ساختمان پرورش طیور باید از نظر خطرات ناشی از سوانح طبیعی، حمله حیوانات وحشی، سرقت و غیره امن باشد و بتوان امنیت آن را تامین کرد.

6) در صورتی که کارگران واحد پرورش طیور در محل ساکن نباشند، باید در فاصله نزدیک امکان اسکان آنها میسر باشد. ( شرایط احداث ساختمان پرورش طیور)

1) زمین:

برای احداث جایگاه ما و تاسیسات پرورش طیور باید زمین هایی استفاده کرد که از نظر کشاورزی با ارزش نیستند، دارای استحکام لازم هستند، امکان زه کشی مناسب وجود داشته باشد دارای شیب زیاد نباشند و نسبت به زمین های اطراف مرتفع باشند تا آب برف و باران به آن ها نفوذ نکند.

2) دارا بودن راه مناسب و امکان گسترش:

مزرعه پرورش طیور باید دارای راه مناسب باشد و در ضمن لازم است محل آن را در زمین اصلی طوری در نظر گرفت که در صورت لزوم بتوان آن را در آینده گسترش داد.

3) امکان تهیه آب مناسب و مورد نیاز

تامین آب مناسب بسیار مناسب است؛ در این خصوص مقدار و کیفیت آب قابل دسترس در مزرعه اهمیت دارد که آب مورد مصرف طیور در شرایط استاندارد به صورت زیر است:

نوع پرنده

سن پرنده ( هفته)

آب مورد نیاز (لیتر/پرنده/روز)

جوجه کشی

8

38%

مرغ مادر گوشتی بالغ در حال تولید

35

32%

البته در گرما و در صورت نامناسب بودن کیفیت خوراک و آب مصرفی مقدار آن افزایش می یابد. در ضمن ضروری است با مقادیر زیر، آب مورد نیاز جهت شستشو، خنک کردن سالن، مصرف کارگرها و … نیز اضافه شود. که مقدار آن تقریقاً برابر جدول بالا است.

کیفیت آب نیز مهم است. کیفیت آب از جنبه های مختلف قابل ارزیابی است. نخست این که ضروری است آب مصرفی طیور فاقد گل و لای و مواد جامد معلق باشد، زیرا صرف نظر از اینکه آب مناسبی جهت استفاه طیور نیست باعث مشکلات متعدد در آب خوری ها نیز می شود. همچنین آب مورد مصرف باید فاقد میکروب های بیماری زا باشد. در غیراین صورت ضروری است آب با مواد ضد عفونی کننده مثل کلر ضد عفونی شود. مقدار مواد جامد آب (سختی آب) نیز مهم است. مجموعه مواد جامد آب را با روش های مختلف از جملع تبخیر آب و یا اندازه گیری میزان عبور جریان الکتریسیته می سنجند و بر این اساس استاندارد آب مناسب طیور به صورت جدول زیر است:

وضعیت آب

کمتر از 1000

آب مناسب جهت استفاده تمام طیور

1000 تا 3000

آب مناسب استفاده طیور است اما ممکن است باعث آبکی شدن مدفوع شود

3000 تا 5000

آب به نسبت قابل قبول برای طیور، اما ممکن است باعث کاهش تولید و بالا رفتن تلفات و بویژه در بورقلمون ها شود.

5000 تا 7000

آب مناسب طیور نیست و باعث افزایش تلفات و کاهش شدید تولیدات می شود.

7000 تا 10000

آب غیر قابل استفاده برای طیور، اما می توان جهت مصرف چهار پایان استفاده کرد.

بیشتر از 10000

غیر قابل استفاده برای حیوانات پرورش ( دام ها)

وجود مقادیر اندک بعضی از مواد سمی می تواند باعث مسمومیت پرنده شود. دراین خصوص می توان از مس، آهن، سرب، جیوه، مولیبدن، سلنیوم، روی،فلوئور، نیتراتو نیتریت نام برد. نیترات و نیتریت به میزان 500 قسمت در میلیون کشنده است و اگر مقدار آن از 50 قسمت در میلیون بالاتر باشد آب مضر و غیر قابل مصرف برای طیور است.

4) امکان تهیه برق مورد نیاز:


دانلود مقاله پرورش شتر مرغ

شترمرغ ها را در طبیعت درانواعی از زیستگاههای باز می توان پیدا کرد آنها از مناطق پربوته و پردرخت دوری جسته و به ندرت در جستجوی سایه برمی آیند روشهای پرورش شترمرغ در مزرعه به طور کلی به سه روش نگهداری می شود که عبارتند از بسته نیمه باز باز
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 37 کیلو بایت
تعداد صفحات فایل 28
دانلود مقاله پرورش شتر مرغ

فروشنده فایل

کد کاربری 7169

اقلیم:

شترمرغ ها در کلیه اقلیم ها قابل زیست و نگهداری اند، از اقلیم های بسیار سرد مانند آلاسکا تا گرم و خشک مانند صحرای افریقا. اما هرچه به سمت اقلیم گرم و خشک پیش برویم کیفیت و کمیت محصولات تولیدی بهتر خواهد شد. تنها اقلیمی که برای پرورش شترمرغ توصیه نمی شود ( علی رغم آنکه در این اقلیم نیز تولید خود را ادامه می دهد) اقلیم گرم و مرطوب ( مناطق شرجی ) است زیرا تأثیر منفی بر تولید آن می گذارد.

شتر مرغ در هوای بارانی ماندن زیر باران را به رفتن زیر سرپناه ترجیح میدهد .

شترمرغ ها را در طبیعت درانواعی از زیستگاههای باز می توان پیدا کرد. آنها از مناطق پربوته و پردرخت دوری جسته و به ندرت در جستجوی سایه برمی آیند.

روشهای پرورش:
شترمرغ در مزرعه به طور کلی به سه روش نگهداری می شود که عبارتند از:

  • بسته
  • نیمه باز
  • باز

مقید کردن و انتقال:
برای گرفتن شترمرغ به دو کارگر نیاز است که هریک کنار یکی از پاهای شترمرغ ایستاده و آنرا از زیر شکم و روی دم نگهدارند. از یک عصای سرکج مخصوص گرفتن گردن برای پایین آوردن سراستفاده می شود. هنگامی که منقار به سطح زانو رسید منقار پایین را با قرار دادن انگشت شست در آن به سمت پایین نگه می دارند. این کار مانع برخورد از روبرو با پاهای شترمرغ می شود. شترمرغ در این وضعیت برای درمانهایی مانند برچسب زدن، دارو دادن ، تزریق، خونگیری و معاینه نگه داشته می شود.

شتر مرغ ها از مناطق پربوته و پردرخت دوری جسته و به ندرت در جستجوی سایه برمی آیند.

جعبه های مقید کردن در بعضی از مزارع به کار می روند اما رضایت بخش نیستند زیرا ممکن است به پوست و پرها صدمه بزنند.

هنگام سوار کردن آنها به کامیون، ممکن است هل دادن آنها از پشت روی سطح شیبدار الزامی شود. شترمرغ های بالغ به کامیونهایی نیاز دارند که ارتفاع دیواره جانبی آنها 2/2 متر بوده و با سایبانی از جنس پارچه کنفی یا کرباس برای جلوگیری از آویزان شدن سرو گردن پوشانده شده باشد. کف کامیون معمولاً با ماسه، خاک یا علف و دیواره های جانبی با کیسه های پرشده از علف برای کم کردن صدمه به پرها و پوست پوشانده می شوند. پارتیشن هایی نیز داخل کامیون قرار داده می شوند که شتر مرغ ها را به گروههای 6 تایی تقسیم می کند و این کار مانع از دراز کردن پاهای شترمرغ و لگد شدن آنها می گردد.

روشهای پرورش:

در روش باز باید یکی از دو روش جوجه کشی طبیعی یا مصنوعی نیز انتخاب گردد.

در روش بسته همراه جوجه کشی مصنوعی بکار گرفته می شود.

روش باز:


دانلود مقاله پرورش بوقلمون

منشع اصلی بوقلمون از آمریکای لاتین و مکزیک بوده و در حال حاضر نیز بوقلمونهای وحشی که قادر به پرواز هستند در مناطق جنگلی وجود دارند اصلاح نژاد بوقلمون از چندین دهه گذشته در کشورهای صاحب نام صورت گرفته و در حال حاضر به اسامی تجاری مختلفی در نقاط مختلف دنیا عرضه میگردد که هر کدام دارای خصوصیات جداگانه میباشد و عموما به سه دسته متوسط ،نیم سنگین و سنگ
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 125 کیلو بایت
تعداد صفحات فایل 42
دانلود مقاله پرورش بوقلمون

فروشنده فایل

کد کاربری 7169

مقدمه ای بر بوقلمون

منشع اصلی بوقلمون از آمریکای لاتین و مکزیک بوده و در حال حاضر نیز بوقلمونهای وحشی که قادر به پرواز هستند در مناطق جنگلی وجود دارند . اصلاح نژاد بوقلمون از چندین دهه گذشته در کشورهای صاحب نام صورت گرفته و در حال حاضر به اسامی تجاری مختلفی در نقاط مختلف دنیا عرضه میگردد که هر کدام دارای خصوصیات جداگانه میباشد و عموما به سه دسته متوسط ،نیم سنگین و سنگین تقسیم میشوند .

پرورش بوقلمونهای گوشتی و رسانیدن به وزن ایده ال در زمان مقرر مستلزم ارائه مدیریت صحیح،جیره بالانس شده از حیث سطح انرژی و پروتئین و مکمل های ویتامین و معدنی متناسب با سن پرنده میباشد .

خصوصیات بوقلمون های تجاری

صنعت بوقلمون تجاری از اهمیت خاصی برخوردار است و نسبت به اینکه گوشت استحصالی در کدام مسیر مورد قرار گیرد . زمان کشتار مشخص و معین میشود بوقلمون های نر گوشتی در مدت زمان 18 هفته به وزن معادل 16 کیلوگرمی وبوقلمون های ماده گوشتی در پایان 14 هفتگی به وزن معادل 8 کیلوگرمی میرسند . لاشه گوشت بوقلمون از 60 درصد گوشت سفید و 40 درصد گوشت قرمز تشکیل یافته است مزه گوشت سفید یا قرمز لاشه بخاطر ترکیبات و عوامل مختلف از یکدیگر متمایز بوده و بسیار لذیذ و خوشمزه میباشد

گوشت بوقلمون از نظر ترکیبات دارای پروتئین بالا،کمترین کلسترول املاح و اسید امینه های ضروری میباشد . لذا یک منبع مناسب پروتئین جهت پخت و تهیه انواع خوراکها و غذاهای مختلف و همچنین برای افراد مسن ،کودکان در حال رشد ،مبتلایان به امراض قلبی و عروقی سایر احاد جامعه میتوانند نیز از گوشت بوقلمون به عنوان منبع پروتئین مناسب استفاده نماید .گوشت بوقلمون از نظرمیزان کلسترول در درجه دوم اهمیت بعد از ماهی قرار میگیرد لذا کسانی که میزان کلسترول و چربی خون بالا دارند براحتی میتوانند از آن بهره مند گردند . در صنایع جانبی بدلیل وزن بالا لاشه و کمی ضایعات براحتی مورد مصرف قرار میگیرد ، موارد مطرح شده خود گواه توجه سایر کشورها به گوشت بوقلمون به عنوان یک منبع پروتئین مناسب تلقی میشود .

شایان ذکر است میزان تلفات جوجه بوقلمون 5/4 تا 5% و عموما در سه هفته اول سن بوده که از نظر اقتصادی و مصرف دان ، بیشتر اذهان را به خود جلب مینماید .

نکات مهم در جوجه ریزی بوقلمون تجاری

  • بستر با ضخامت 8 سانتی متر از تراشه و چوبهای تمیز اشباع ، خشک و عاری از آلودگی های خارجی و گرد و خاک .
  • مادر مصنوعی با 38 درجه سانتی گراد و حرارت سالن 22 تا 26 درجه سانتی گراد و گارد محافظ بقطر 4 متر جهت 250 قطعه جوجه یکروزه بمدت یک هفته تعداد 4 عدد آبخوری داخل گارد .
  • یک ساعت استراحت در صورت انتقال از یک سایت طولانی و سپس جوجه ریزی و دادن آب و دادن خوراک یک ساعت بعد از جوجه ریزی .
  • دادن خوراک یک ساعت بعد از جوجه ریزی
  • برنامه نوری بمدت 5/2 ساعت روشنایی و 5/3 ساعت تاریکی در 24 ساعت اول سپس 14 ساعت روشنایی و 10 ساعت تاریکی تا پایان دوره پرورشی با شدت 100 لوکس
  • توجه خاص به درجه ها و معرفی منابع حرارتی ، آب و خوراک ،جلوگیری از ورود موش و سایر پرندگان وحشی
  • ساختمان اداری و مسکونی داخل مزرعه احداث شود ،ایجاد حوضچه ضد عفونی به ابعاد و عمق مناسب در مدخل درب ورودی سالن ها استفاده از چکمه و لباس مناسب
  • فضای مورد نیاز جوجه یک روزه تا 8 هفته ،8قطعه در هر متر مربع و از 8 هفته تا پایان دوره پرورشی ،4 قطعه در هر مترمربع

واکسیناسیون

علی رغم مقاومت نسبی در مقابل عوامل بیماری زا ، به منظور اطمینان از حصول نتیجه بهتر انجام واکسیناسیون در مورد بوقلمونهای تجاری به شرح ذیل میباشد .

3روزگی برونشیت

12 روزگی نیوکاسل

17 روزگی گامبرو

27 روزگی نیوکاسل لاسوتا روغنی

36 روزگی یاداوری نیوکاسل

جوجه کشی بوقلمون

تهیه جوجه بوقلمون

 جوجه بوقلمون را می توان مانند جوجه مرغ به وسیله جوجه کشی طبیعی یا جوجه کشی مصنوعی تهیه کرد در پرورش صنعتی بوقلمون معمولااز جوجه کشی مصنوعی استفاده میشود.

 تخم ها باید دارای اندازه مناسب برای جوجه کشی باشد .


دانلود مقاله پرورش بره ها به صورت مصنوعی با استفاده از جایگزین شیر

فاکتورهای مهم پرورش گوسفند یکی قیمت بره در بازار و دیگری تعداد بره های از شیر گرفته شده به ازای هر راس گوسفند در سال می باشدبا انجام فعالیت های اصلاحی و سلکسیون ، گوسفندانی با دوقلوزایی ومیزلن بره زایی بالا حاصل شده اند که علاوه بر مزیتی که دارد این افزایش مشکل پرورش بره ها را به وجود آورده است
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 15 کیلو بایت
تعداد صفحات فایل 13
دانلود مقاله پرورش بره ها به صورت مصنوعی با استفاده از جایگزین شیر

فروشنده فایل

کد کاربری 7169

مقدمه
فاکتورهای مهم پرورش گوسفند یکی قیمت بره در بازار و دیگری تعداد بره های از شیر گرفته شده به ازای هر راس گوسفند در سال می باشد.با انجام فعالیت های اصلاحی و سلکسیون ، گوسفندانی با دوقلوزایی ومیزلن بره زایی بالا حاصل شده اند که علاوه بر مزیتی که دارد این افزایش مشکل پرورش بره ها را به وجود آورده است.
کافی نبودن شیر مادر به دلایل مختلف مانند سنگینی زایمان مرگ و میر بره ها را افزایش داده است.هزینه ،زمان، نیروی کاری که صرف کاهش میزان مرگ و میر بره ها که ناشی از گرسنگی بره و فقدان خصوصیات مادری میش است می شود از لحاظ اقتصادی مقادیر زیادی را شامل می شود. برای حل این مشکل پرورش مصنوعی بره ها به عنوان یک راه چاره برگزیده می شود.
پرورش دهندگان گوسفند به دلیل مراقبت های ویژه ، احتمال مرگ ، صرف نیروی کار و گران بودن غذای جایگزین از پرورش مصنوعی بره ها خودداری می کنند. اما امروزه با پیشرفت صنعت تولید خوراک دام،بهبود ویژگیهای کیفی،وجود سیستم های مختلف پرورش مصنوعی و وجود تجهیزات مدرن ، میزان نیروی کار کاهش یافته است.
درپرورش بره ها به صورت مصنوعی ،با از شیرگیری زودهنگام بره و تغذیه مناسب ورعایت اصول بهداشتی نتیجه پرورش مصنوعی بره ها به میزان زیادی بهبود یافته است.
پرورش بره ها با شیشه وپستانک یا سیستم های اتوماتیک
در یک واحد پرورش گوسفند،وقتی تصمیم به پرورش مصنوعی بره ها گرفته میشود اولین روشی که به ذهن پرورش دهندگان می رسد استفاده از شیشه و پستانک است .


دانلود مقاله پروبیوتیک به عنوان یک افزودنی غذائی برای حیوانات مزرعه

پروبیوتیکها میکروبهای انتخاب شده‌ای میباشند که جهت جایگزین شدن در لوله گوارش انسان یا حیوانات مورد استفاده قرارمی‌گیرند هدف از این جایگزینی بهبود شرایط فیزیولوژیکی و بطور کلی تغییر اکوسیستم پیچیده روده میباشد
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 11 کیلو بایت
تعداد صفحات فایل 5
دانلود مقاله پروبیوتیک به عنوان یک افزودنی غذائی برای حیوانات مزرعه

فروشنده فایل

کد کاربری 7169

پروبیوتیکها میکروبهای انتخاب شده‌ای میباشند که جهت جایگزین شدن در لوله گوارش انسان یا حیوانات مورد استفاده قرارمی‌گیرند . هدف از این جایگزینی بهبود شرایط فیزیولوژیکی و بطور کلی تغییر اکوسیستم پیچیده روده میباشد.

در طول لوله گوارش انسان تقریبا در شرایط عادی ۱۰۱۴ و یا ۱۰۰۰۰۰ برابر بیشتر از تعداد افراد جهان و بیشتر از ۴۰۰ نوع میکروارگانیسم متفاوت وجود دارد . موقعی که یک فرد و یا یک حیوان متولد میشود دستگاه گوارش او فاقد هرنوع میکرو ارگانیسمی میباشد . بعد از تولد جایگزینی میکروبها شروع میگردد و میکروبها از محیط وارد دستگاه گوارش شده و تشکیل کلنی میدهند .

این میکروبها بوسیله غذای خورده شده و همچنین شرایط محیط روده تحت تاثیر قرار میگیرند. بعد از یک مدت زمان مشخص میکروبهای دستگاه گوارش بدلیل شرایط ثابت محیط و ترکیب مواد غذائی و فیزیولوژی موجود تثبیت میگردند که این برای حفظ حیات موجود ضروری میباشد این میکروبها تعداد زیادی از اعمال حیاتی از جمله تجزیه مواد غذائی ،تولید بعضی از متابولیتها ، از جمله اسیدها ، ویتامینها ، و باکتریوسینها و در نتیجه حذف رقابتی و تجزیه شدن ترکیبات فعالی مثل هورمونهای استروئیدی و تحریک سیستم ایمنی بدن را انجام میدهند .

تحت شرایط عادی غلظت میکروارگانیسمها در طول لوله گوارش و در قسمتهای تحتانی دستگاه گوارش حتی به میزان ۱۰۱۱ افزایش می‌یابد. در حیوانات بعضی از عوامل، محیط لوله گوارش را تحت تاثیر قرار میدهند که در این میان تنش مهمترین عامل تاثیر گذار بر روی دستگاه گوارش و در نتیجه روی عملکرد میباشد .

حمل و نقل ، تغییر درجه حرارت ، نوع ماده غذائی ، بیماریها ، و آنتی بیوتیکها فاکتور اصلی تغییردهنده توازن میکروبها در لوله گوارش می باشند.زمانی که توازن میکروبی بهم میخورد احتمال تشکیل کلنی توسط باکتریهای بیماریزا در روده افزایش مییابد . تغییر ماده غذائی یکی از عوامل تغییر دهنده محیط میکروارگانیسمها میباشد و در طول زمانی که این میکروارگانیسمها به محیط جدید عادت پیدا میکنند تعدادشان پائین تر از حد نرمال خواهد بود و این به معنی ایجاد فضا برای باکتریهای بیماریزا وتولید سم توسط آنهاست که در نهایت موجب اسهال و یا مرگ حیوان خواهد شد .


دانلود مقاله پرنده شناسی

پرنده بزرگ تیز با منقار برگشته و محکم و دندانه دار که انواع گوناگونی دارد و ماده بعضی از انواع آن را برای شکار تربیت می کردند کلمه باز به معنی پرنده معروف( باید از vaza به معنی پرنده مشتق باشد که آن هم از مصدر اوستایی vaz به معنی پریدن مشتق است
دسته بندی دام و طیور
فرمت فایل doc
حجم فایل 43 کیلو بایت
تعداد صفحات فایل 62
دانلود مقاله پرنده شناسی

فروشنده فایل

کد کاربری 7169

فصل نخست:

پرنده باز

مشخصات و ریشه واژگانی:

پرنده بزرگ تیز با منقار برگشته و محکم و دندانه دار که انواع گوناگونی دارد و ماده بعضی از انواع آن را برای شکار تربیت می کردند.1

کلمه باز به معنی پرنده معروف( باید از vaza به معنی پرنده مشتق باشد که آن هم از مصدر اوستایی vaz به معنی پریدن مشتق است.2

صورت پارسی این کلمه را baz د انسته اند و پهلوی را baz و bac یا baj .

هم چنین در فرهنگ فارسی به پهلوی صورت دیگری نیز برای نامیدن این پرنده در زبان پهلوی پیشنهاد شده است. با تلفظ caxyvak , cihrap که بنظر میاید این تلفظ با واژه (چرغ) مناسب تر باشد و احتمالاٌ نوعی خلط معنی و لغزش روی داده است. آنچه مسلم است در متن پهلوی بندهش این کلمه چنان که گذشت baj ,یاbac ثبت شده است.3

باز را در زبان عربی(بازی) و(صفر) گویند. و آن را به نام شهیاز و قوش هم می خوانند.4



1. فرهنگ فشرده سخن جلد1ص270

2. فرهنگ ایران باستان، ص314 به نقل از فرهنگ جانورانص123

3. فرهنگ جانوران جلد1 ص123

4. دانشنامه- جلد1- ص 228

نوشتارهای پهلوی:

در کتاب بندهش دو بار از باز سپید سخن رفته و در هر دو مورد جزو آفریده های اهورایی قلمداد شده است که به سود مردمان علیه( مار پردار) می جنگد:

.... مار پر دار اگر سایه بر کسی(از) مردم افکند، میرد و دادار باز سپید را برای از میان بردن ان مار آفریده است که چون آن مار پر دار شود و به زیر پرتو خورشید رود تا سایه بر مردم جاندار افتد تا می رند، باز سپید به کارزار آن مار رود و بدو ( آن مار) کشته شود. اگر پیروزی باز را باشد. مار کشته شود، اگر مار چیره شود باز را کشد، اگر هر دو هم زور شوند هر دو به یکدیگر پیچیده شوند، مرده بر زمین افتند.1

قصص قرآن:

در متون تفسیری و قصص، داستان ویژه ای درباره باز دیده نشد، اما نکته خاص در تاج التراجم ثبت شده است که از قول علی بن ابی طالب(ع) درباره تابوت و سکینه ی معروف بنی اسرائیل است. به این ترتیب:

علی مرتضی علیه السلام گوید: آن بازی بود بر صورتی که ان را دو سر بود و روی همچون روی مردم.2


بررسی تخمین تنش پمساند با استفاده از روش های غیر مخرب و ارتباط آن با پروسه‌های تولید در انواع مختلف جوشکاری

طی چند دهه گذشته تنش های پسماند در ظروف فشار دار و کاربردهای ساختمانی و خطوط انتقال گاز و نفت و در ساختارها و قطعات فلزی و مورد توجه قرار گرفته است از سوی پیشرفت هایی که امروز در ارزیابی یکپارچه ساختارها و ساختمانها در ارتباط با قطعات جوش صورت پذیرفته است خواستار اطلاعات دقیق تری دربارة حالت تنش پسماند می باشد تنش های پسماند در اثر عدم هماهنگی در
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 1528 کیلو بایت
تعداد صفحات فایل 43
بررسی تخمین تنش پمساند با استفاده از روش های غیر مخرب و ارتباط آن با پروسه‌های تولید در انواع مختلف جوشکاری

فروشنده فایل

کد کاربری 8044

عنوان تحقیق :

تخمین تنش پمساند با استفاده از روش های غیر مخرب و ارتباط آن با پروسه‌های تولید در انواع مختلف جوشکاری


مقدمه

طی چند دهه گذشته تنش های پسماند در ظروف فشار دار و کاربردهای ساختمانی و خطوط انتقال گاز و نفت و در ساختارها و قطعات فلزی و ... مورد توجه قرار گرفته است. از سوی پیشرفت هایی که امروز در ارزیابی یکپارچه ساختارها و ساختمانها در ارتباط با قطعات جوش صورت پذیرفته است. خواستار اطلاعات دقیق تری دربارة حالت تنش پسماند می باشد. تنش های پسماند در اثر عدم هماهنگی در شکل طبیعی بین نواحی مختلف در یک قطعه حاصل می شود به خصوص در جوشکاری تنش های پسماند مورد توجه قرار می گیرند. تنش های پسماند می توانند بسته به علامت، اندازه و توزیع شان با توجه به تنش های اعمالی، تعیین کننده باشند.

ارزیابی تنش پسماند یک ابزار مهمی نیز برای کنترل فرآیند، کنترل کیفی، ارزیابی طراحی و آنالیز نقص می باشد. چون این تنش ها می توانند پیامدهای مهمی روی عمکلرد اجزاء و قطعات مهندسی داشته باشند و همچنین تأثیر زیادی روی خوردگی، مقاومت شکست، خزش و ... دارا می‌باشند. لذا کاهش و کم کردن این تنش ها مطلوب می باشد. از این رو تنش های پسماند در اتصالات جوشکاری شده عمدتاً توسط عملیات حرارتی یا توسط تنش مکانیکی کاهش می یابد.

- روش های متفاوتی برای اندازه گیری یا تخمین تنش پسماند براساس اندازه گیری دقیق یا با استفاده از تکنیک های عددی وجود دارد. اندازه گیریها می توانند از نوع مخرب مانند (سوراخکاری) یا غیر مخرب مانند اشعه x، یا تفرق نوترونی و فراصوتی باشند. و تفرق نوترونی اساساً یک تکنیک برجسته برای پی بردن به تنش پسماند به صورت غیر مخرب در درون قطعات مهندسی در سه بعد و در حجم های کوچک می باشد.

در این پروژه به تخمین تنش پمساند با استفاده از روش های غیر مخرب و ارتباط آن با پروسه‌های تولید در انواع مختلف جوشکاری فولاد می پردازیم.

- جوشکاری ذاتاً باعث بروز تولید ترک هایی در محل جوش می شوند، اندازه و محل این ترکها را می توان به عنوان یک معیار در تعیین عمر جوشکاری مورد استفاده قرار داد. تنش هایی که می توانند باعث رشد ترک خوردگی شوند به تنش های بیرونی محدود نمی شوند. به عنوان نمونه می توان گفت که تنش های پسماند در داخل و اطراف ناحیه جوش به عنوان یک پیامد از فرآیند جوش، تولید می شود. بنابراین این موضوع برای دانستن اندازه و علامت تنش پمساند در ناحیه جوش مهم خواهد بود. و این بحث خصوصاً در جوشهای با مقطع ضخیم که دارای یک تنش 3 بعدی است جالب توجه می باشد. در اینجا به بحث در مورد استفاده از اسکن کردن کششی نوترونی برای فراهم آوردن اسکن های 3 بعدی ضخیم مربوط به نمونه های فولادی جوشکاری شده و جوشکاری نشده خواهیم پرداخت.

- دراین پروژه به بررسی تنش پسماند در لوله های فولادی 9Cr-1Mo اشاره خواهد شد که جوشکاری مربوط به این فولادها در صنایع نفت و برق کاربرد گسترده ای دارند. از سویی در فرآیندهای تولید مانند جوشکاری تنش پسماند می تواند منجر به شکست در قططعات فولادی شود. لذا برای بهبود میزان سختی و برای حذف تنش پسماند بعد از جوشکاری ، جوشکاری فولاد Cr-Mo بایستی تحت عملیات حرارتی پس از جوشکاری قرار بگیرد. جوشکاری ذوبی یک فرآیند اتصالی است که در ساخت کشتی، پل های فولادی، مخازن فشار و غیره مورد استفاده قرار می گیرد. مزیت این جوشکاری به عنوان یک فرآیند اتصال دهنده عبارتست از : کاری زیاد اتصال ، انعطاف پذیری و هزینه کم تولید. جوشکاری ذوبی هرچند دارای ویژگی های زیادی در صنعت است اما می تواند خواص مواد را تغییر داده و باعث خمش، انقباض و تنش پسماند در اتصال شود. لذا یک عملیات حرارتی پس از جوش به طور گسترده برای کاهش تنش پسماند ناشی از جوشکاری توصیه می شود. از سویی تنش های پسماند تأثیر بسزایی بر روی تعیین شکل جوش، استحکام خستگی، تافنس شکست و... دارند بنابراین ارزیابی و درک تنش های پسماند ناشی از جوشکاری مهم می باشد.

روش های زیادی برای ارزیابی توزی تنش پسماند وجود دارد. روش های آزمایشی شامل پراش اشعه x ،تحلیل فراصوتی، ایجاد سوراخ و برش است. روش های عددی که تحلیل های مفصل‌تری از تنش های پسماند ناشی از جوشکاری را ارائه می کند. در طول سه دهه گذشته به علت پیشرفت رایانه ها، تکنیک های عددی گسترش قابل توجهی یافته است. در این پروژه به بررسی تنش های پسماند پس از جوشکاری و پس از یک عملیات حرارتی، پس از جوش به وسیله روش المان محدود اشاره خواهد شد.

از طرفی افزایش احتمال شکست و کاهش استحکام در قطعات دو اثری اند که تنش های پسماند باعث بروز آنها می شوند. لذا به منظور ایجاد یک طراحی مطمئن، ما بایستی یک روش مناسبی را پیدا کنیم که به واسطه آن بتوان به پیش بینی های مربوط به اندازه و توزیع تنش پسماند دسترسی پیدا کرد. یک استفاده گسترده از پیش بینی تنش پسماند در جوشکاری، روش المان محدود می باشد. اگرچه پیش بینی تنش های پسماند حین جوشکاری، با استفاده از روش المان محدود می تواند یک روش اقتصادی و دقیق تری نسبت به روش های آزمایشی مانند پراش نوترونی، اشعه x و تحلیل فراصوتی باشد ولی پیچیدگی هایی هم در هنگام شبیه سازی فرآیند جوشکاری با استفاده از روش المان محدود وجود دارد. برای مثال روش های ابعادی دو بعدی (2D) و سه بعدی (3D) روش‌هایی‌اند که برای رسیدن به دقت مطلوب بایستی مورد استفاده قرار گیرند و این پروژه به بحث و بررسی در مورد آنها خواهیم پرداخت.

- مواد فلزی هنگام جوشکاری با مواد مشابه و غیرمشابه می توانند باعث ایجاد تنش پسماند گردند. گسترش این نوع از تنش داخلی اغلب می تواند تحت تأثیر کشش دائمی غیرسازگاری حاصل از عملکردهای مکانیکی و حرارتی مربوط به جوشکاری و تغییر شکل پلاستیکی واقع گردد. چنین عملکردهایی می تواند منجر به شکل گیری عیب های شبکه ای شامل جابجایی و حفره سازی شوند. چون تکنیک PAS (یک روش غیرمخرب برای تعیین عیوب در فلزات و آلیاژها می باشد.) ثابت کرده است که قادر است، تنش های پسماند را در نورد کاری سرد تعیین کند و به صورت پلاستیکی فولادهای ضد زنگ مارتنزیتی را تغییر شکل دهد. لذا در اینجا از تکنیک PAS برای مشخص کردن تنش های پسماند در نمونه های جوشکاری شده شامل فولادهای ضد زنگ مارتنزیتی و یا آستینیتی استفاده شده است. در اینجا به مشخص کردن تنش پسماند در نمونه های جوشکاری در فولادهای آلیاژی از نوع L304 و 823- EP توسط تکنیک PAS پرداخته خواهد شد، جوشکاری تلاطمی اصطکاکی، یک متود اتصال جامد است به همراه 5 فاز عملیات که در کل فرآیند صورت می گیرد. دوره غوطه وری، دوره ته نشینی ، دوره جوشکاری ثابت، دوره ته نشینی ثانویه و دوره رهایی. این تکنیک اتصال فلز از جوشکاری اصطکاکی منشاء می گیرد. از آنجایی که بالاتری دما در فرآیند (FSW) کمتر از دمای ذوب ماده در قطعه کار می باشد. لذا بزرگترین مزیت این روش : تعیین میکروساختارهای نرم بدون شکاف یا تغییر شکل کم و بدون کاهش عناصر آلیاژی می باشد. هر چند FSW یک تکنولوژی جدید جوشکاری می باشد اما در جوامع آکادمیک و صنعتی برای اغلب آلیاژهای آلومینیوم مورد استفاده قرار می گیرد. بررسی ها نشان می دهد که فرآیند FSW در آلیاژهای آلومینیوم جوشکاریهایی با کیفیت بالا و هزینه پایین را تأیید می کند در نتیجه بهترین عملکرد ساختاری یک دیگر از مزایای این روش می باشد. که در این پروژه به بررسی تعیین عددی تنش پسماند در جوشکاری FSW (جوشکاری تلاطمی اصطکاکی)و استفاده از مدل سه بعدی پرداخته می شود و هم چنین شبیه سازی عددی دمای اتصال و تحلیل ترمو، مکانیکی غیر خطی سه بعدی با آنالیز المان محدود و تحلیل تنش پسماند در جوشکاری (FSW) را مورد مطالعه قرار می دهد.

- تنش های پسماند در ساختارها و قطعات فلزی یک پیامد طبیعی از تکنولوژی تولید مانند : قالب گیری، نورد جوشکاری و ... می باشند. تنش پسماند تنش در ماده بدون هیچ گونه بارگذاری حرارتی یا مکانیکی بیرونی می باشد و حوزه های تنش پسماند همواره در یک قطعه یا ساختار می‌باشد.

سطح تنش پسماند داخلی در ورقه فولادی نورد گرم شده اخیراً به عنوان یک پارامتر کیفی مهم، تشخیص داده شده است. اگر این مورد، دقت نشود مشکلاتی را به واسطه دانستیه گرادیان ، مربوط به تنش پسماند ایجاد می کند، برای مثال، برشهای طولی به صورت منحنی در آمده و شکل‌های برش تغییر می کند و جوش ها تغییر شکل می یابند. حتی کم شدن مقاومت به خوردگی در لوله های جوشکاری شده، تحت اثر تنش پسماند در ورقه فولادی می‌باشند. که این موارد در این پروژه مورد بحث و بررسی قرار می گیرد.

در طول زمان جوشکاری غالباً تنش های پسماند منجر به ایجاد خساراتی در قطعه می شوند که این امر باعث بروز مشکلاتی در تجهیزات نیروگاهی می شود از آن جمله به ترک خوردگی ناشی از خوردگی تنشی (SCC) می توان اشاره کرد. به منظور جلوگیری از خوردگی SCC در فولاد ضد زنگ، توجه به خواص ماده و تنش پسماند در جوشکاری ضروری می باشد. علاوه بر این توجه بیشتر به ماده و محیط یک ارزیابی مؤثر از تنش پسماند در جوشکاری را ضروری می کند. در حالت کلی، حوزه تنش پسماند جوش به چندین عامل اصلی شامل، خواص ماده، ابعاد ساختاری و شرایط محدود کننده بیرونی و پارامترهای فرآیند جوشکاری مانند حرارت ورودی تعداد پاس های جوش، توالی جوشکاری، درجه حرارت پیش گرم و درجه حرارت بین پاس جوش بستگی دارد هنگامی که یک مدل عددی برای پیش بینی دقیق تنش پسماند جوش استفاده می شود، درجه حرارت و یا رفتار مکانیکی مانند کار سختی بایستی به دقت محاسبه شود. روش المان محدود (FEM) یک ابزار آنالیز عددی قوی مفید می باشد. از این روش می توان برای شبیه سازی درجه حرارت جوش، تنش پسماند و تغییر شکل جوش، بهره برد.

در این پروژه ما از هر دو آنالیز عددی و تجربی برای تحقیق در مورد درجه حرارت و توزیع تنش پسماند جوش در لوله هایی از جنس فولاد ضد زنگ با دیواره ای با ضخامت متوسط، استفاده می نماییم. در ابتدا آزمایش هایی برای مشخص کردن تنش پسماند در لوله فولادی ضد زنگ304 SuS انجام می شود و سپس تحلیل المان محدود دو بعدی برای شبیه سازی درجه حرارت و تنش پسماند انجام خواهد گرفت و در نهایت تأثیر استحکام نهایی فلز جوش روی تنش پسماند توسط شبیه سازی عددی انجام خواهد شد.

از جمله روش های کاهش تنش پسماند کوبیدن لیزری می باشد. اصولاً کوبکاری لیزری یک تکنیک عملیات سطحی است که از لحاظ مکانیکی فعالیتی دو طرفه محسوب می شود. انرژی مربوط به کوبکاری لیزری یک پالسی خیلی بزرگتر از ساچمه پاشی می باشد. این تکنیک به عنوان یک روش جلوگیری در برابر ترک خوردگی و خوردگی تنشی (SCC) در نیروگاهها می باشد. در این پروژه اصول مربوط به کوبکاری لیزری که باعث بهبود اثرات تنش پسماند در هنگام بکارگیری کوبکاری لیزری برای ایجاد محدوده های جوش و اتصالات جوشکاری شده می شود پرداخته خواهد شد و در پایان روش هایی برای کاهش تنش پسماند در جوشکاری پیشنهاد می شود.

عنوان : پیش بینی تنش پسماند جوشکاری در لولة فولادی 9Cr-1Mo اصلاح شده با جوشکاری لب به لب با چند پاس با توجه به اثرات انتقال فازی

چکیده :

هدف از این مقاله تحقیق تأثیر انتقال فازی حالت جامد روی ارزیابی توزیع های تنش پسماند در لوله های فولادی 9Cr-1Mo اصلاح شده با جوشکاری لب به لب می باشد. یک مدل المان محدود پلاستیکی الاستیکی حرارتی که در انتقال فاز متالوگرافیکی به کار می آید ، ایجاد شده بود . اثرات روی تنش آنالیز عددی تحقیق شده بودند . اثرات روی تنش پسماند جوشکاری مربوط به تغییرات حجمی و تغییرات استحکام نهایی برای انتقال مارتنزیتی – استنیتی توسط آنالیز عددی تحقیق شده بودند. نتایج شبیه سازی شده نشان می دهند که تغییرات حجمی و تغییر استحکام نهایی بواسطة انتقال مارتنزیتی روی تنش پسماند جوشکاری – تأثیر داشته است . شکل دهنده نه تنها باعث تغییر اندازة تنش پسماند می شود ، بلکه علامت مربوط به تنش پسماند را در ناحیه جوش مشخص می کند . در حالت هایی که تغییرات حجمی بواسطه انتقال فازی در نظر گرفته می شود ، نتایج شبیه سازی شده در حالت کلی در یک توافق و هم سوئی خوبی با اندازاه گیریهای تجربی قرار دارند.

لغات کلیدی : المان محدود ، آنالیز عددی ، تنش پسماند جوشکاری ، انتقال فازی ، جوشکاری با چند پاس .

1- مقدمه :

جوشکاری مربوط به فولادهای Cr-Mo یک نقش خیلی حیاتی را در صنایع نفت و برق ، بازی می کند. بنابراین جوشکاری و عملیات حرارتی ، پس از جوشکاری (PWHT) مربوط به فولادهای Cr-Mo به صورت خیلی گسترده در چند سال اخیر مورد مطالعه قرار گرفته اند . فرآیندهای تولید همانند جوشکاری ، تنش های پسماند ناخواسته که گاهگاهی مشاهده می شوند ، منجر به یک شکست شکننده ، تردی هیدروژنی (HE) و یک انحراف از عمر خستگی می شود . در حالت کلی، برای بهبود میزان سختی و برای حذف تنش پسماند بعد از جوشکاری ، جوشکاری فولاد ، Cr-Mo بایستی تحت عملیات حرارتی پس از جوشکاری قرار بگیرد .

فولاد ضد زنگ 9Cr-1Mo اصلاح شده ، یک مادة‌ساختاری نسبتاً‌جدیدی است که در اصل برای مولدهای ( ژنراتورهای ) بخار در صنعت تولید برق و هسته ای پیشرفته ، ایجاد شده بود .

چون فولاد 9Cr-Mo اصلاح شده دارای یک استحکام خزشی بالا می باشد ، حتی در درجه حرارت بالا ، به یک درجه حرارت نسبتاً بالایی برای حذف تنش پسماند جوشکاری توسط(PWHT) نیاز دارد. بنابراین ، برای طبقه بندی معیار برای شرایط PWHT مناسب لازم است تا تنش پسماند جوشکاری به صورت دقیق پیش بینی شود . بهر حال ، روی مفهوم تنش پسماند جوشکاری در فولادهای 9Cr-1Mo، در حال حاضر مطالب اندکی را می توان پیدا نمود . در این مطالعه هدف پیش بینی تنش پسماند جوشکاری در لوله فولادی 9Cr-1Mo اصلاح شده توسط آنالیز عددی می باشد در موارد مربوط به فولادها، این نکته قابل تشخیص می باشد که انتقال فازی می تواند به صورت قابل توجهی روی توسعه تنش های پسماند تأثیر بگذارد .

به منظور پیش بینی دقیق تنش پسماند جوشکاری ، فاکتور متالوژیکی بایستی به حساب بیاید ؛ یک تعداد از مدل های عددی برای پیش بینی تنش پسماند جوشکاری با توجه با انتقال متالوژیکی ، ایجاد شده اند . در کار حاضر ،هدف ما تمرکز روی پیش بینی تنش های پسماند جوشکاری در جوش‌های لب به لب ، با چند پاس برای لوله فولادی 9Cr-1Mo با در نظر گرفتن اثرات انتقال فازی حالت جامد ، می باشد . بر اساس نتایج مربوط به تحقیقات گذشته ، یک مدل المان محدود پلاستیکی الاستیکی حرارتی به حساب آمده برای انتقال های فاز متالوژیکی ، ایجاد شده بود. اثرات مربوط به تغییرات حجمی و تغییر استحکام نهایی به واسطه انتقال مارتنزیتی – استینیتی روی تنش های پسماند جوشکاری توسط آنالیزهای عددی تحقیق شده بودند . تجربیاتی نیز برای تأیید اثرات مربوط به مدل عددی پیشنهاد شده انجام شدند.

فرآیند تجربی :

ماده استفاده شده در این مطالعه ، لوله های فولادی 9Cr-1Mo با قطر بیرونی 318.5mm، ضخامت 21.4mm و طول 1900mm بود ، ترکیبات شیمیائی مربوط به فلز پایه و فلز جوش و وضعیت علمیات حرارتی مربوط به فلز پایه در جدول 1 نشان داده شده اند . لوله فولادی 9Cr-1Mo اصلاح شده در 1040ºCبه حالت نرمال در آمده بود و در درجه حرارتی که پایین تر از 730ºc نمی باشد، تحت عملیات حرارتی قرار گرفتند . لوله توسط یک روش جوشکاری چند پاسه، جوشکاری شد . توالی (‌ترتیب ) پاس جوشکاری و جزئیات ابعادی مربوط به شیار در شکل 1 آمده اند. دو پاس نخستین توسط جوشکاری قوس تنگستن تحت پوشش گاز محافظ (GTAW) با استفاده از سیم TGS-9Cb به عنوان یک فلز پر کننده اجراء شدند.

باقیماندة پاس های جوش با استفاده از جوشکاری قوس فلزی تحت پوشش گاز (GMAW) و سیم MGS-9Cb به عنوان یک فلز پر کننده ، انجام شدند. گاز محافظ، Ar-5%Co2 بود شرایط جوشکاری برای هر پاس در جدول 2 نشان داده شده اند .

بعد از تکمیل جوشکاری، مقیاس کرنشی با سه محور با طول 1mm برای اندازه گیری کشش های آزاد شده در جهت محیطی و جهت محوری روی سطوح بیرونی و درونی که زاویه محیطی º180 بود، استفاده شدند.

شکل 2- محل های مربوط به اندازه گیریهای کششی روی سطوح داخلی و بیرونی لوله جوشکاری شده را نشان میدهد . با استفاده از کشش های آزاد شده ، تنش های پسماند جوشکاری رامی توان محاسبه نمود.

[ جدول 1- ترکیب شیمیایی ( درصد جرمی ) مربوط به فلز پایه و فلز جوش و وضعیت عملیات حرارتی مربوط به فلز پایه ]

[ شکل 1- جزئیات ابعادی مربوط به شیارها و محل های مربوط به پاس جوش ].

3-مدل سازی المان محدود :

جوشکاری ذوبی یک پدیدة خیلی پیچیده ای است که شامل انتقال حرارت ، انتقال جرم ، واکنش متالوژیکی ، شکست المانی ، تغییر ساختار میکروسکوپی ، ارزیابی خواص مکانیکی و... می باشد.

رویکردهای عددی پیچیده برای مدلسازی به صورت دقیق در فرآیند جوشکاری لازم و ضروری می‌باشد .

بهرحال ، برای تصاحب همه ویژگی ها ، نتیجه به دست آمده در یک مدل همیشه به صورت حقیقی حل نخواهد شد. . برخی از این فاکتورها ممکن نیست به صورت قابل توجهی روی محاسبات تنش پسماند تأثیر بگذارندو آنها شبیه سازی را به صورت قابل توجهی پیچیده می کند . بنابراین ، فرضیه های ساده سازی بایستی برای پایه گذاری یک مدل المان محدود دقیق و مؤثر به صورت منطقی ، مورد استفاده قرار گیرد .

در این مطالعه ، توزیع تنش پسماند توسط یک فرمول المان محدود ترمومکانیکی غیر متصل با استفاده از کد ABAQUS شبیه سازی شده بود . در آنالیز حرارتی و آنالیز مکانیکی ، محاسبات از خواص مکانیکی و ترموفیزیکی و ابسته به درجه حرارت فلز پایه و فلز پر کننده استفاده می شود . خواص فیزیکی حرارتی وابسته به درجه حرارت و خواص مکانیکی وابسته به درجه حرارت مربوط به فولاد ضد زنگ 9Cr-1Mo به ترتیب در شکلهای 3 و 4 نشان داده شده اند .آنالیز حرارتی بر اساس فرمول بندی هدایت حرارتی با منبع حرارتی ترکیب شده ای از یک شار سطحی و یک شار حجمی بود .

یک آنالیز المان محدود سه بعدی ، روش بهینه ای از سیکل حرارتی مربوط به فرآیند جوشکاری می باشد ، اما این روش نیازمند یک زمان محاسبة‌ خیلی طولانی می باشد . چون مسئله انتقال حرارت مربوط به جوشکاری لوله رامی توان با یک آنالیز متقارن محوری دو بعدی با فرض اینکه سرعت جوشکاری به صورت قابل توجهی نسبت به نرخ رسانایی فلز جوش کاری شده سریع می باشد ، ساده سازی نمود،‌یک مدل المان محدود متقارن محوری با استفاده از المان های محدود چهار گره ای ایجاد شد .

[جدول 2- شرایط جوشکاری برای هر فاز ]

[شکل 2- محل های اندازه گیری گیج های کرنشی در امتداد جهت محوری ]

[شکل 3- خواص فیزیکی حرارتی وابسته به درجه حرارت ]

[شکل 4- خواص مکانیکی حرارتی وابسته به درجه حرارت ]

کار اصلی در توسعه و ایجاد مسیرهای فرعی کاربری برای کد ABAQUS بود که برای شبیه سازی حرارت ورودی برای جوشکاری چند پاسه در آنالیز حرارتی و برای یکپارچه سازی اثرات انتقال فازی حالت جامد در آنالیز مکانیکی استفاده شده بودند. در مطالعه ای که هم اکنون پیش روی شماست ،‌آنالیز حرارتی و آنالیز مکانیکی به صورت غیر متصل بودند و به صورت متوالی (‌ترتیبی ) انجام شدند.

به عنوان یک گام در مرحله نخست در آنالیز حرارتی محاسبه مربوط به حوزه های درجه حرارت گذرا را در حین جوشکاری انجام داده بودند . به عنوان یک مرحله ثانویه ، آنالیز مکانیکی بر اساس نتایج آنالیز حرارتی انجام شده بود در این مرحله ، شکست حجمی مربوط به مارتنزیت نیز با استفاده از رابطه ماربرگر- کوستین [1] ‌ انجام شد . مدل المان محدود به کار رفته برای آنالیز مکانیکی مشابه با مدل حرارتی می باشد بجز برای نوع المان محدود درشرایط مرزی .

1-3- آنالیز حرارتی :

مدل جوشکاری در شکل (5(a و توالی مربوط به پاس های جوش در شکل(b) 5 نشان داده شده اند . اندازة بستر مربوط به هر پاس جوش عمدتاً طبق حرارت ورودی تعیین شده بود. در مطالعه ای که پیش روی شما قرار دارد ، شکل بستر به صورت دقیق مدل سازی نشده بود. حرارت ورودی برای بخش کاری را می توان به دو بخش تقسیم بندی نمود . یکی حرارت مربوط به قوس جوشکاری و دیگری حرارت مربوط به فلز مذاب می باشد . در این مطالعه ، حرارت مربوط به قوس جوشکاری توسط یک منبع حرارت سطحی با یک توزیع گوسیان مدل سازی شده بود و قطرات مربوط به فلز مذاب توسط یک منبع حرارتی حجمی مدل سازی شده بود . ویکمن و پاردو[2] ، ابعاد مربوط به حوضچة جوش و ابعاد تقویت شده مربوط به جوش های GMAW را با استفاده از یک منبع حرارتی مرکب را پیش بینی کردند . این تحقیق منجر به این پیشنهاد شدکه به نظر می رسد که حرارت مربوط به قطرة فلز ، 60% حرارت کلی فلز فرض شود ، منطقی می باشد . در این مطالعه ، حرارت مربوط به قوس نیز 40% حرارت کلی و حرارت مربوط به قطرات فلز مذاب ، 60%حرارت کلی فرض شد . در جوشکاری چند پاسه ، المان های جدید ، به صورت دوره ای به شبکه موجود بعد از یک پاس جوش ، اضافه شده بودند . ضمن اینکه ، شرایط مرزی انتقال حرارت نیز بعد از اضافه شدن المان های جدید ، اصلاح شده بودند.برای بحساب آوردن اثرات انتقال حرارت به واسطه جریان سیال در حوضچه جوش ، یک افزایش تصّنعی در قابلیت رسانایی حرارتی بالای درجه حرارت مذاب فرض شده بود . اثرات حرارتی ایجاد شده توسط انجماد حوضچه جوش توسط در نظر گرفتن حرارت نهان و نهفته ذوبی ، مدل سازی شده بودند .

برای محاسبة افت های حرارتی ،‌هم انتقال حرارتی تشعشعی و هم انتقال حرارتی همرفتی در سطح قطعه کار ، مدل سازی شده بودند.

ورودی حرارتی خالص کلی به صورت زیر محاسبه شده بود :

(1)

که در این فرمول مبین فاکتور راندمان ، U ولتاژ قوس ، I جریان جوشکاری و سرعت جوشکاری می باشد.

فاکتور راندمان برای فرآیند جوشکاری 0.6 ,GTAW و برای فرآیند جوشکاری GMAW ، 0.75 فرض می شود .

حرارت ورودی خالص کل را می توان مطابق با جدول 2، محاسبه نمود.

در آنالیز حرارتی ، هم درجه حرارت پیش گرم و هم درجه حرارت موجود در داخل پاس جوش در نظر گرفته شدند . درجه حرارت پیش گرم فرض شد که 300ºC می باشد که با نتایج تجربی هماهنگی داشت و درجه حرارت داخل پاس به فرض شده بود .

2-3- انتقال فاز حالت جامد :

هنگامی که فولاد بالای درجه حرارت A1 حرارت داده می شود ساختار bcc آن شروع به تغییر به سمت ساختار fcc می نماید و حجم کاهش می یابد.

[شکل 5 (a) مدل شبیه سازی و (b) 5 شبکه های المان محدود نزدیک محدودة جوش و توالی‌پاس‌ های‌جوش ]

در حین خنک کاری سریع ، استنیت با ساختار( (fcc به مارتنزیت با ساختار( bct ) تغییر نموده و حجم افزایش می یابد . تغییر حجم بواسطة انتقال فازی در دورة حرارت دهی و خنک کاری ، در شکل 6 نشان داده شده است .

برای فولاد 9Cr-Mo ، اندازه گیریهای درجه حرارت و محاسبات نشان میدهند که علیرغم یک درجه حرارت پیش گرم 300ºC و حرارت ورودی نسبتاً بزرگ ، استنیتی شدن فلزی در حین جوش کاری به 500ºC خنک می شود (‌در یک محدوده زمانی 100-150s) این زمان خنک کاری کوچکتر از زمان خنک کاری معیار می باشد . این قضیه منجر به این پیشنهاد می شود که بعد از خنک شدن جوش به درجه حرارت اتاق ، ساختار میکروسکوپی مربوط به فلز جوش و HAZ ، مارتنزیت کامل می باشد .

کمیت مربوط به مارتنزیت منتقل شده از استنیت به درجه حرارت زیر درجه تحت خنک کاری Ms، بستگی دارد . این انتقال تقریباً‌مستقل از ترکیب شیمیایی می باشد و همه انواع فولادها را در بر می‌گیرد .در این مطالعه ، بسته به درجه حرارت پیک که یک نقطه یکپارچه سازی از یک المان حاصل در حین فرآیند حرارت دهی و فرآیند خنک کاری از A3 به 500ºC می باشد ، تصمیم گیری بر اساس این پرسش که آیا نقطة‌مورد نظر از انتقال استنیت به مارتنزیت است یا نه ، صورت می پذیرد . در واقع ، چون راندمان خنک کاری از A3 تا 500ºC خیلی کمتر از زمان لازم مورد نیاز برای خنک کاری برای فولاد 9Cr-1Mo می باشد، همه نقاط مورد نظر که دارای درجه حرارت پیک بالاتر از A3 می باشد، تحت انتقال مارتنزیتی در هنگام خنک کاری به Ms قرار دارد . فرض ‌می شود که هنگام خنک شدن به Mf ، استنیت به صورت کامل به مارتنزیت تبدیل می شود .

در محاسبات ، درجه حرارت Ms فرض شد که 375ºCمی باشد درجه حرارت 200ºC,Mf A3 920ºC , A1 820ºC می باشند.

در این مطالعه ،‌رابطه ماربرگر – کوستین بیان شده توسط فرمول (2) برای شرح انتقال مارتنزیت استفاده شده بود .

(2)

در این فرمول ،fm بخشی از مارتنزیت در درجه حرارت موجود ، T درجه حرارت در حین خنک کاری می باشد .

به منظور ردیابی و علّت یابی تغییر شکل مارتنزیتی در حین خنک کاری ، تعادل دیفرانسیلی بر اساس فرمول 2 در مدل المان محدود استفاده شده بود . با توجه به نحوة‌نگارش به صورت تصاعدی، فرمول دیفرانسیلی را می توان به صورت زیر نوشت:

(3)

که در این فرمول افزایش درجه حرارت در حین خنک کاری می باشد .

3-3- آنالیز مکانیکی :

در آنالیز مکانیکی ، اثرات روی تنش پسماند مربوط به تغییرات حجم و تغییر تنش نهایی به واسطة انتقال مارتنزیتی ، در محاسبات اعمال می شوند.

در دورة‌مربوط به یک فرآید جوش ، یک کشش اضافی القاء شده توسط ارزیابی ساختار میکروسکوپی در حین انتقال فاز حالت جامد در امتداد کرنش حرارتی می باشد . طبق تغییر ساختار میکرسکوپی ، انتقال القاء شده پلاستیکی نیز تولید می شود . بنابراین نرخ کرنش کلی( ) را می توان به صورت مجموع مؤلفه های تکی از نرخ کرنش به صورت زیر باز نویسی نمود :


بررسی سازندگان آشپزخانه های صنعتی در کشور ایران

این شرکت با بهره گیری از تجربیات چندین ساله صاحب نظران این صنعت به عنوان یکی از سازندگان آشپزخانه های صنعتی در کشور ایران از سال 1381 فعالیت خود را با نام شرکت تولید آشپزخانه های مطبخ آرا آغاز کرد
دسته بندی ساخت و تولید
فرمت فایل doc
حجم فایل 22 کیلو بایت
تعداد صفحات فایل 36
بررسی سازندگان آشپزخانه های صنعتی در کشور ایران

فروشنده فایل

کد کاربری 8044

تاریخچه شرکت:

این شرکت با بهره گیری از تجربیات چندین ساله صاحب نظران این صنعت به عنوان یکی از سازندگان آشپزخانه های صنعتی در کشور ایران از سال 1381 فعالیت خود را با نام شرکت تولید آشپزخانه های مطبخ آرا آغاز کرد.

در ابتدا این مجموعه تنها در زمینه ساخت تجهیزات آشپزخانه فعالیت داشت. لیکن با گذشت مدتی کوتاه و با هدف خدمت دهی هرچه بیشتر شرکت زمینه تولید خود را گسترش داده و در حال حاضر نه تنها در زمینه ساخت تجهیزات آشپزخانه های صنعتی بلکه در زمینه تولید تجهیزات هتل و بیمارستان نیز فعالیتهای گسترده ای را آغاز نموده است.

این شرکت با استفاده از کادری مجرب توانسته است با بهره گیری از تجربیات مهندسین و متخصصان باسابقه در زمینه طراحی، ساخت، نصب، و ساماندهی خطوط آشپزخانه تنوع تولید خود را افزایش داده و امروزه بالغ بر 150 نوع از انواع محصولات مصرفی در آشپزخانه های صنعتی را تولید نماید. از جمله خدمات جانبی این شرکت مشاوره در طراحی و ارائه نقشه های چیدمان جهت آشپزخانه ها و محاسبه و برآورد اقلام مورد نیاز بر اساس ظرفیت های اعلام شده و ایجاد واحد خدمات پس از فروش را می توان نام برد.

هدف این شرکت بروز آوری هرچه بهت این صنعت در کشور ایران و حرکت در مسیر استانداردهای جهانی جهت پایداری این صنعت می باشد.

فرآیندهای جوشکاری «مقاومتی» Resistance Welding

مقدمه و کلیات :

فرآیندهای جوشکاری مقاومتی با فرآیندهای قبلی تفاوت کلی دارد .اتصال دو سطح توسط حرارت و فشار توأماً انجام می گیرد .فلزات به دلیل مقاومت الکتریکی در اثر عبور جریان الکتریکی گرم شده و حتی به حالت مذاب نیز می رسند که طبق قانون ژول حرارت حاصل با رابطه زیر تعیین می شود .Q=KRI2t

=I شدت جریان( آمپر) ، R مقاومت( اهم)، t زمان( ثانیه) وQ ،حرارت (ژول ).

فرآیندهای قوس الکتریکی حرارت در روی کار بوسیله هدایت و تشعشع توزیع می شود اما در فرآیندهای جوشکاری مقاومتی حرارت در عرض داخلی و سطح مشترک دو ورق در موضع اتصال در اثر عبور جریان الکتریکی تولید و منتشر می شود . جریان الکتریکی مذکور از طریق الکترودها و تماس آنها به سطح کار منتقل و یا از طریق ایجاد حوزه مغناطیسی احاطه شده در اطراف کا به قطعه القاء می شود . هر چند هر دو روش بر اساس حرارت مقاومتی پایه گذاری شده است اما معمولاً نوع اول فرآیند جوشکاری مقاومتی و دومی به فرآیند جوشکاری القائی نیز مرسوم شده است .

فاکتورهای شدت جریان و زمان از طریق دستگاه جوش قابل کنترل هستند ، اما مقاومت الکتریکی به عوامل مختلف بستگی دارد از جمله : جنس و ضخامت قطعه کار ، فشار بین الکترودها ، اندازه و فرم و جنس الکترودها و چگونگی سطح کار یعنی صافی و تمیزی آن .

.مقاومت 3 مقاومت تماس بین دو ورق مهمترین قسمت است. فلزات دارای مقاومت الکتریکی کم بوده بالنتیجه مقاومتهای 1و3و5 اهمیت بیشتری پیدا می کنند . مقاومتهای 2و4 بستگی به ضریب مقاومت الکتریکی و درجه حرارت قطعه کار دارد .مقاومتهای 1 و 5 ناخواسته بوده و باید حتی المقدور آنرا کاهش داد . تمیزی سطح کار و الکترود و نیروی فشاری وارد بر الکترود عوامل تقلیل دهنده این مقاومتها (1و5) می باشند .

از نظر اقتصادی لازم است که فاکتور زمان حتی المقدور کاهش یابد . که در نتیجه جریان الکتریکی لحظه ای بالا در حدود 10000 – 3000 آمپر با ولتاژ 10 – 5/0 ولت مورد نیاز است . انواع مختلف روش های جوشکاری مقاومتی به روش ایجاد مقاومت موضعی بالا و تمرکز حرارت در نقطه مورد نظر ارتباط دارد ، ولی به هر حال تماس فیزیکی بین الکترودهای ناقل جریان الکتریکی و قسمت هایی که باید متصل شوند نیز مورد نیاز است . بطور کلی فرآیندهای جوشکاری مقاومتی یکی از بهترین روش ها برای اتصالات سری است .

دستگاههای جوشکاری مقاومتی شامل دو واحد کلی است : واحد الکتریکی (حرارتی) واحد فشاری(مکانیکی) . اولی باعث بالا بردن درجه حرارت موضع مورد جوش و دومی سبب ایجاد فشار لازم برای اتصال دو قطعه لب رویهم در محل جوش است .

منبع معمولی تأمین انرژی الکتریکی ، جریان متناوب 220 یا250 ولت است که برای پائین آوردن ولتاژ و افزایش شدت جریان (به مقدار مورد لزوم برای جوشکاری مقاومتی) از ترانسفورماتور استفاده می شود .که سیم پیچ اولیه با سیم نازکتر و دور بیشتر و ثانویه با سیم کلفتر و دور کمتر (اغلب یک دور ) به الکترودها متصل است.

جریان الکتریکی از طریق دو الکترود (فک ها) به قطعه کار و موضع جوش هدایت می شود که معمولاً الکترود پائین ثابت و بالایی متحرک است .الکترود همانند گیره یا فک ها دو قطعه را دروضعیت لازم گرفته و جریان الکتریکی برای لحظه معین عبور می کند که سبب ایجاد حرارت موضعی زیر دو الکترود در سطح مشترک دو ورق می شود. جریان الکتریکی در سطح تماس باعث ذوب منطقه کوچکی از دو سطح شده و پس از قطع جریان و اعمال فشار معین و انجماد آن ، دو قطعه به یکدیگر متصل می شوند .

الکترود در فرآیند های مختلف مقاومتی می تواند به اشکال گوناگونی باشد که دارای چندین نقش است از جمله : هدایت جریان الکتریکی به موضع اتصال ، نگهداری ورقها بر رویهم و ایجاد فشار لازم در موضع مورد نظر و تمرکز سریع حرارت در موضع اتصال الکترود باید دارای قابلیت هدایت الکتریکی و حرارتی بالا و مقاومت «اتصالی» یا تماسی (contact resistance) کم و استحکام و سختی خوب باشد ،علاوه بر آن این خواص را تحت فشار و درجه حرارت نسبتاً بالا ضمن کار نیز حفظ کند .ازاین جهت الکترود ها را از مواد آلیاژی مخصوص تهیه می کنند که تحت مشخصه یا کد RWMA به دو گروه A آلیاژهای مس و B فلزات دیر گدار تقسیم بندی می شوند ، در جدول (1001) و (1101) مشخصات این دو گروه درج شده است .

مهمترین آلیاژهای الکترود مس ـکرم ، مس ـ کادمیم ، و یا برلیم ـکبالت ـ مس می باشد .این آلیاژها دارای سختی بالا و نقطه انیل شدن بالائی هستند تا در درجه حرارت بالا پس از مدتی نرم نشوند ، چون تغییر فرم آنها سبب تغییر سطح مشترک الکترود با کار می شود که ایجاد اشکالاتی می کند که در دنباله این بخش اشاره خواهد شد .

همانطور که قبلاً اشاره شد قسمت هائی که قرار است بیکدیگر متصل شوند باید کاملاً برروی یکدیگر قرار داشته و در تماس با الکترود باشند تا مقاومتهای الکتریکی «تماسی» R1 وR5 کاهش یابد . مقاومت الکتریکی بالا بین نوک یا لبه الکترود و سطح کار سبب بالا رفتن درجه حرارت در محل تماس می شود که اولاً مرغوبیت جوش را کاهش می دهد (جوش مقاومتی ایدآل جوشی است که علاوه بر استحکام کافی علامتی در سطح آن ملاحظه نشود ) .

ثانیاً مقداری از انرژی تلف می شود .

روشهای مختلفی برای اعمال فشار پیش بینی شده است که دو سیستم آن معمول تر است :

الف : سیستم مکانیکی همراه با پدال ، فنر و چند اهرم

ب : سیستم هوای فشرده با دریچه های اتوماتیک مخصوص که در زمان های معینی هوای فشرده وارد سیستم می شود . این فشار و زمان قابل تنظیم و کنترل است .

در سیستم اول به علت استفاده از نیروی کارگر ممکن است فشار وارده غیر یکنواخت و در بعضی موارد که دقت زیادی لازم است مناسب نباشد، اما در مقابل ارزان و ساده است .در سیستم هوای فشرده همانطور که اشاره شد دقت و کنترل میزان فشار و زمان اعمال فشار بمراتب بیشتر است .

این فرآیند جوشکاری برای اتصال فلزات مختلف بکار گرفته می شود و سؤالی که مطرح جدول (1001) بعضی مشخصات گروه B از الکترود های فرآیند جوشکاری مقاومتی خواهد شد اینست که چگونه خواص فیزیکی این فلزات ممکن است بر روی خواص جوش یا موضع اتصال تأثیر بگذارد ؟

کلاس

10

11

12

13

14

سختی راکول

72 B

94 B

98 B

96 B

85 B

هدایت الکتریکی %IACS

35

28

27

30

30

استحکام فشاریPSi

135000

160000

170000

200000

00000

همتنطور که اشاره شد حرارت برای بالا بردن درجه حرارت موضع اتصال توسط عبور جریان الکتریکی و مقاومت الکتریکی بوجود می آید و یا با بیان دیگر مقاومت الکتریکی بزرگتر در زمان و شدت جریان معین تولید حرارت بالاتری می کند و برعکس . مقاومت الکتریکی یک هادی بستگی مستقیم به طول و نسبت معکوس به سطح مقطع دارد . البته جنس هادی هم که میزان ضریب مقاومت الکتریکی است خالی از اهمیت نیست ، (قانون اهم R=PI/S) . بنابراین خصوصیت جوشکاری مقاومتی با تغییر ضخامت ورق ، تغییر مقطع تماس الکترود با قطعه و جنس قطعه تغییر می کند .

با توجه به این توضیحات جوشکاری مقاومتی بر روی ورق آلومینیمی(با ضخامت و مقطع تماس الکترود ثابت) در مقایسه با ورق فولاد زنگ نزن به شدت جریان بیشتری نیاز است (87/2=9/19P= 70stainless steel P= ). میکرواهم سانتیمتر ). (Mild steel Ap) البته چگونگی حالتهای تماس الکترود با قطعات و تماس خود قطعات عوامل دیگر هستند که فشار الکترود ها و ناخالصی ها در بین سطوح می توانند بر روی این مقاومت ها مؤثر باشند

فاکتور فیزیکی مهم دیگر هدایت حرارتی قطعات مورد جوش می باشد که با ضریب هدایت حرارتی مشخص می شود .جالب توجه اینکه فلزات با هدایت الکتریکی خوب دارای هدایت حرارتی بالا هم می باشند . بنابراین در جوشکاری مقاومتی این گونه فلزات یا آلیاژ ها به شدت جریان بالاتر و زمان عمل کوتاهتر نیاز دارند ، چون حرارت به اطراف هدایت شده و اگر تمرکز و شدت حرارت لازم در موضع اتصال نباشد جوشی انجام نخواهد گرفت .

در مورد فولاد معمولی نیازی به شدت جریان بالا و زمان کوتاه نیست ، اما در بعضی موارد (فولادهای خاص سختی پذیر) زمان جوشکاری زیاد احتمال جدایش رسوب کاربید(Carbide Precipitation) را افزایش می دهد بنابراین در این حالت ها نیز باید زمان عملیات جوشکاری کوتاه تنظیم شود .

خواص فیزیکی دیگر قطعه کار که در این فرآیند خالی از اهمیت نیست : گرمای ویژه و ضریب انبساط حرارتی است . اولی برای محاسبه حرارت مورد نیاز برای ذوب موضع جوش و دومی از نظر تنش های باقیمانده ، پیچیدگی و احتمال ایجاد ترکیدگی قابل ملاحظه است (گاهی اوقات عملیات حرارتی پس از جوشکاری لازم ا ست تا پیچیدگی کاهش یابد ) .

با توجه به نکات فوق می توان :

الف : فولادهای معمولی را بدون مشکل خاصی جوش مقاومتی داد.

ب : فولادهای سختی پذیر (Hardenab Steel) ،چون در الکترود سیستم آبگرد وجود دارد محل جوش و احیاناً اطراف آن سریع سرد شده و ترد و شکننده می شود و گاه لازم است عملیات حرارتی انیل کردن برروی آنها انجام شود .

ج : فولادهای زنگ نزن (Stainless Steel) ، فولادهای فریتی و مارتنزیتی کمتر با این روش جوش داده می شود . اما فولادهای آوستینی پایدار و ناپایدار را به راحتی می توان از طریق جوش مقاومتی اتصال داد ، به ویژه اینکه هدایت حرارتی و الکتریکی کمتری نسبت به فولادهای معمولی دارند و باید سیکل جوش را در زمان کوتاهتر انجام داد . البته از نظر مقاومت خوردگی محل جوش و اطراف آن مسایل مهمی وجود دارد که هنوز هم تحقیقات زیادی را به خود اختصاص داده است .

د : فولادهای پوشش داده شده (Steel With Protective Coation) فولادها با مواد مختلف و روشهای گوناگون پوشش داده می شود که اندود قلع ، روی و یا رنگ از آن جمله اند در مورد پوشش انواع رنگ که اغلب هادی جریان الکتریکی نیستند باید حتماً محل جوش از رنگ تمیز شود . اما فولادهای گالوانیزه شده و پوشش قلع و غیره قابل جوشکاری مقاومتی هستند ، ولی به علت نقطه ذوب پائین این پوشش ها مقداری از آنها در محل و اطراف موضع جوش از بین می روند و از نظر عمل محافظت ضعیف می شوند و مقداری هم به الکترود می چسبند که بالنتیجه در مورد تمیز کردن نوک الکترود ها در این مواقع دقت بیشتری لازم است . البته مخلوط شدن این مواد از قبیل قلع و روی به مذاب جوش سبب تردی جوش نیز می شود که در مواقعی که نیاز به استحکام و انعطاف پذیری معینی باشد باید سطوح تماس دو ورق را تمیز کرد . گاهی لازم است شرایط فشار و آمپر نیز تغییر کند .

ح : فلزات غیر آهنی ، آلیاژهای آلومینیم ، آلومینیم ـ منیزیم و آلومینیم ـ منگنز قابل جوشکاری مقاومتی هستند مشروط بر آنکه سطح اکسیدی محل جوش تمیز شده و ظرفیت دستگاه جوش باندازه کافی باشد . آلیاژهای آلومینیم ـ مس ، برنج و برنز برای این نوع جوشکاری مناسب نیستند . مس به علت هدایت الکتریکی و حرارتی بالا به دستگاه با ظرفیت خیلی بالا و الکترود های سطح سخت و یا تنگستن نیازمند است و معمولاً ورق های ضخامت بالاتر از 6/1 میلیمتر را با روش های دیگر جوشکاری اتصال می دهند. آلیاژ مونل و آلیاژهایی نیکل شبیه فولادهای زنگ نزن هستند .



بررسی قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن

مس، اولین فلزی است که توسط انسان مورد استفاده قرار گرفت پنج هزار سال پیش، یونانی ها و رومیان باستان، آن را از جزیره قبرس کنونی استخراج می کردند یونانیان آن را به نام کالکو (Chalco) و رومیان به نام آیس (Aes) می شناختند و چون از جزیره قبرس استخراج می شد آن را آیس سیپریم (Cypirum) نامیدند بعداً در زبان های مختلف اروپایی ، به دلیل تلفظ های متفاوت کلمه
دسته بندی ساخت و تولید
فرمت فایل doc
حجم فایل 1267 کیلو بایت
تعداد صفحات فایل 34
بررسی قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن

فروشنده فایل

کد کاربری 8044

قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن

مس، اولین فلزی است که توسط انسان مورد استفاده قرار گرفت. پنج هزار سال پیش، یونانی ها و رومیان باستان، آن را از جزیره قبرس کنونی استخراج می کردند. یونانیان آن را به نام کالکو (Chalco) و رومیان به نام آیس (Aes) می شناختند و چون از جزیره قبرس استخراج می شد آن را آیس سیپریم (Cypirum) نامیدند. بعداً در زبان های مختلف اروپایی ، به دلیل تلفظ های متفاوت کلمه، سپیریم شکل های متفاوتی به خود گرفت، به طوری که امروز در انگلیسی آن را کوپر (Copper) و درآلمانی (Kupfer) و در فرانسه (‍Cuivre) می نامند.

این فلز، به دلیل سختی توأم با انعطاف پذیری، هدایت حرارتی و الکتریکی بالا، قبول عملیات مکانیکی گوناگون، شکل پذیری فوق العاده ، مقاومت در برابر خوردگی، رنگ های زیبا، غیرمغناطیسی بودن، قابلیت ریخته گری مناسب، لحیم کاری نرم و سخت، جوش پذیری، غیر سمی بودن، .... و نیز امکان تهیه آلیاژهای گوناگون در کنار سایر فلزات، به یک عنصر بسیار مفید و غیر قابل چشم پوشی در صنایع بشری آمده است.

مس با جرم اتمی 54/63 و ساختار (FCC) در 0c1083 ذوب می شود. این عنصر، به دلایل متالورژیکی، به عنوان حلال ترین فلز شناخته شده و به غیر از سرب، تقریباً کلیه عناصر با آن، قابلیت انحلال دارند.

از نظر شیمیایی، مس از فلزات نجیب به شمار آمده و در جدول تانسیون، پس از نقره قرار دارد. مس در مجاورت هوا و رطوبت، از یک قشر نازک اکسید مس که مخلوطی از CuO و Cu2O است پوشیده می شود. این قشر نازک، بقیه فلز را از اکسیده شدن محافظت می کند. اگر این اکسیدها مدت زیادی در مجاورت هوا قرار گیرند و یا سطح مس به شدت اکسیده شود، رنگ مایل به سیاه، آن ، به تدریج به رنگ سبز که مخلوطی از سولفات و یا کلرورهای قلیایی است تبدیل می شود که آن را زنگار (Patina) می گویند. هوای محیط، در تشکیل این ترکیبات بسیار مؤثر است. به طوری که اکثراً در نواحی صنعتی، ترکیبات سولفات به فرمول 3Cu(OH)2 و CuSo4 و در مجاورت دریاها ترکیبات کلروری مثل 3Cu(OH)2 و CuCl2 به وجود می آید.

مس مذاب، قابلیت انحلال شدیدی برای گازهای مختلف دارد و این پدیده، هنگام انجماد به سرعت کاهش می یابد. مقدار حل شدن گازها در مس، به درجه حرارت و فشار جزیی گازها در محیط خارج بستگی دارد.

گازها در مس بیشتر به صورت بیشتر به صورت اتمی حل می شوند. مقدار حلالیت گازها را می توان به صورت رابطه نمایش داد که در آن C مقدار گاز حل شده بر حسب سانتی متر مکعب در هر 100 گرم فلز مس بوده، P فشار جزئی گاز در محیط خارج و K ضریب ثابتی است که به درجه حرارت بستگی دارد. با توجه به رابطه بالا می توان نتیجه گرفت که افزایش دما با افزایش K و در نتیجه افزایش مقدار گاز حل شده مذاب رابطه مستقیم دارد.

بررسی حلالیت گازها در مس و آلیاژهای آن

گازهایی مثل اکسیژن، هیدروژن و ... در مس قابل حل بوده و تأثیراتی بر آن می گذارد و که بدین قرار است :

- حلالیت اکسیژن

اکسیژن، به صورت اتمی در درجه حرارت اوتکتیک 1065 درجه سانیتگراد حدود 009/0 درصد و درجه حرارت محیط حدود 002/0 درصد در مس قابل حل است. در صورتی که مقدار اکسیژن، این حدود باشد، با مس وارد ترکیب شده و اتکتیکی به صورت Cu-Cu2O با حدود 39/0 درصد اکسیژن تشکیل می دهد.

Cu-Cu2O شکل (1) دیاگرام تعادلی

شکل (2) حلالیت اکسیژن در مس

همانگونه که از منحنی های شکل (1) و (2) مشخص است، ترکیب اکسید فلزی Cu2O در درجه حرارت 1000 تا 1050 درجه سانتی گراد پایدار است. در درجه حرارت های پایین تر، این ترکیب به CuO تبدیل می شود. بنابراین پس از جوشکاری، براساس یکی از واکنش های زیر، CuO در اثر سرد شدن تشکیل خواهد شد.

2Cu2O + O2 4 Cu2O

Cu2O CuO +Cu

در اثر جوشکاری و در درجه حرارت های بالاتر از 1050 درجه سانتیگراد، Cu2O تجزیه شده و اکسیژن آزاد می کند که در اثر فعل و انفعالات شیمیایی جانشینی با سایر عناسر موجود، ترکیب شده و بخار آب و سایر اکسیدهای فلزی، تولید می کند.

همچنین در هنگام پیشگرم کردن و شروع جوشکاری در حرات های حدود 700 درجه سانتی گراد، مس با یک شعله سبز رنگ با اکسیژن محیط ترکیب شده و CuO تولید می کند :

که در درجه حرارت های بالاتر CuO حاصله بهCu2O تبدیل خواهد شد.

با توجه به این نتایج و بررسی انجام شده می توان گفت که مقدار جذب اکسیژن در مس مذاب به زمان بستگی دارد و از این رو، برای محافظت مس مذاب از ورود اکسیژن، بهترین روش استفاده از جوشکاری با سرعت بالا و وجود گازهای محافظ حوضچه است.

حلالیت هیدروژن

هیدروژن در مس مذاب، در 1083 درجه سانتیگراد به میزان 6 سانتی متر مکعب در هر 100 گرم از فلز حل می شود ولی در حضور عناصر آلیاژی مثل قلع، روی یا آلومینیوم این حلالیت به شدت کاهش می یابد. به طور مثال ، در آْلیاژ مس با 10 درصد آلومینیوم، حلالیت هیدروژن تا 50 درصد کاهش می یابد. جذب هیدروژن توسط حوضچه مذاب از منابع مختلف مثل هوای محیط، مواد مصرفی، رطوبت و چربی و غیره انجام می گیرد. با انجماد مس نیز، میزان حلالیت آن تا حدود کاهش می یابد. در صنعت مس، تأثیر هیدروژن چه در حالت مذاب و چه در حالت جامد، یکی از فاکتورهای مهم به حساب می آید. در حالت جامد، اگر مس در درجه حرارت های بالا با هیدروژن در تماس باشد، هیدروژن به دلیل دارا بودن شعاع اتمی بسیار کوچکتر نسبت به مس می تواند در مس نفوذ کرده و سپس تشکیل ملکول H2 بدهد و اگر در مس اکسیژن وجود داشته باشد، واکنش زیر حاصل خواهد شد :

بخار آب تولید شده بر خلاف هیدروژن، در مس نامحلول است و بنابراین در اطراف مرزدانه ها جمع و به علت تراکم و فشار زیادی که ایجاد می کند، مرزدانه ها را سست، ضعیف و شکننده می کند. (3). این خاصیت خطرناک به هیدروژن تردی شهرت پیدا کرده، بنابراین در زمان جوشکاری باید از قطعات مسی و پر کننده هایی استفاده کرد که قبلاً اکسیژن زدایی شده باشند.

شکل (3) هیدروژن تردی در مس

شکل (4) حلالیت هیدروژن در درجه حرارت های مختلف در مس

بر اساس آنچه گفته شد، نتیجه گرفته می شود که معمولاً هیدروژن مازاد بر حلالیت، به دو صورت در مس بروز می نماید:

- هیدروژن ملکولی که تحت تأثیر فشار داخلی و در جه حرارت مس مذاب انبساط یافته، و تخلخل های درشت در وسط جوش ایجاد می کند

- هیدروژن اتمی آزاد شده که در اثر فعل و انفعلاتی تولید بخار آب می کند و در واقع تأثیر مشترک هیدروژن و اکسیژن را به قطعه مسی به صورت تخلخل های ریز و پراکنده، تحمیل می کند.

نکته آخر این که در هر درجه حرارت، افزایش مقدار اکسیژن به تقلیل حلالیت هیدروژن و بالعکس منجر می شود. در نمودار شکل (5) نسبت حلالیت اکسیژن و هیدروژن در مس مذاب در دمای حدود 1200 درجه سانتی گراد، نشان داده شده است.

شکل (5) حلالیت توأم اکسیژن و هیدروژن در مس مذاب

- حلالیت سایر گازها

در جوشکاری مس، گازهایی مثل نیتروژن و Co2 کلاً بی تأثیر بوده و حتی می توانند حوضچه مذاب را از گازهای ناخالص دیگر حفاظت نمایند. اما حضور گازهای گوگردی مثل SO2 ، علاوه بر ایجاد حباب های گازی و در نهایت تخلخل، با ایجاد سولفور مس Cu2S تأثیر زیادی در کاهش خواص مکانیکی مس خواهند داشت.

تأثیرات عناصر آلیاژی بر خواص جوش پذیری مس

عناثر آلیاژی مختلف، بر حسب خواص و شرایط خاص خود، تأثیرات گوناگونی بر خواص فیزیکی و مکانیکی مس به ویژه در حالت جوشکاری اعمال می کنند.

عناصر افزودنی برای بهبود قابلیت ماشینکاری مثل سرب، گوگرد و تلوریم

سرب مایع در داخل آلیاژهای مس، یکی از عیوبی است که ناشی ازخروج سرب از شبکه کریستالی در آخرین مراحل انجماد است. در حقیقت وجود عناصری مثل سیلیسیم، آلومینیوم و گازهای محلول در مایع، باعث راندن سرب از داخل شبکه خواهد شد.

وجود گوگرد، تلوریم و حتی عناصری مثل سلینم و تیتانیوم، هرچند خواص ماشینکاری را افزایش می دهند، اما علاوه بر افزایش مقاومت الکتریکی، سبب سرخ شکنندگی (Redshortness) مس نیز می گردند و از این رو، در کاهش خواص جوش پذیری مس مؤثرند.

روی

روی یکی از عناصر آلیاژ کننده اصلی مس به شمار می آید. آنچه در این بحث قابل ذکر است، تأثیر شدید روی، بر افزایش قابلیت جوش پذیری مس است. نکته قابل توجه دیگر بخارات سمی است که در حین جوشکاری ترکیبات مس و روی متصاعد می شوند که باید کاملاً مد نظر قرار گیرند.

قلع

به طور کلی قلع، در حدود 1 تا 10 درصد با افزایش حساسیت مس به بروز ترک های گرم، قابلیت جوش پذیری را کاهش می دهد. علاوه بر این، اکسید قلعی که در جریان جوشکاری حاصل شده و به صورت پودر سفیدی در کناره های جوش دیده می شود، بسیار شکننده بوده و استحکام جوش را تا حد زیادی از بین می برد. تنها حسن وجود مقادیر ناچیز قلع، کاهش بخارات سمی در جریان جوشکاری مس محتوی روی است.

بریلیوم، آلومینیوم و نیکل

وجود مقدار کمی از بریلیوم در مس، باعث می شود که خواص مکانیکی فلز حاصل با مس کاملاً متفاوت باشد. مقدار بریلیوم اضافه شده به مس، همواره از 2 درصد بیشتر و از 5/2 درصد کمتر است. زیرا اگر مقدار آن از 2 درصد کمتر باشد عملاً اثری روی خواص مکانیکی مس نداشته و اگر مقدار آن از 5/2 درصد تجاوز کند، آلیاژی شکننده به وجود می آید. خواص مکانیکی آلیاژ به عملیات حرارتی روی آن بستگی دارد. در هنگام جوشکاری باید با انتخاب صحیح نوع جریان و شدت قوس، لایه سخت اکسید برلیوم را از سطح آلیاژ زدود. مورد استعمال آلیاژ در مواقعی است که به فلزی احتیاج باشد که در هنگام ساختن جسم مورد نظر نرم و چکش خوار بوده و پس از ساختن جسم با انجام عملیات معینی بتوان آن را سخت کرد و جسم ساخته شده، خواص عالی مکانیکی داشته باشد. از مشخصات دیگر این آلیاژ، مقاومت عالی آن به خوردگی در مقابل هوا است.

نیکل در مس حل شده و باعث ریز شدن دانه ها می گردد. به طور کلی، نیکل سبب بالا رفتن استحکام کششی خواهد شد، بدون آن که از مقدار فاز بکاهد. این عنصر مقاومت به خوردگی آلیاژ را به خصوص در مقابل آب دریا بالا می برد. آلیاژ را به خصوص در مقابل آب دریا بالا می برد. مقدار نیکل در این آلیاژها در حدود 2 تا 7 درصد است. آلیاژهای مس- نیکل را می توان مورد عملیات حرارتی قرار داد. مهمترین خاصیتی که این آلیاژ پیدا می کند، حفظ کردن سختی در حرارت های نسبتاً بالا تا حدود 500 درجه سانتیگراد و تغییر در انبساط حرارتی آن است. در هنگام جوشکاری این آلیاژها نیز برداشتن لایه اکسید نیکل سطح آلیاژ ضروری است که البته زحمت بسیار کمتری نسبت به لایه اکسید برلیوم و آلومینیوم دارد.

آلیاژهای مس- برلیوم- نیکل دار، دارای خواص مکانیکی و هدایت الکتریکی بالاتری نسبت به آلیاژ دوتایی هرکدام است. زیرا در این حالت، ترکیب بین فلزی بین بریلیوم و نیکل به وجود آمده در نتیجه، عملیات حرارتی در توزیع این ترکیب بین فلزی و افزایش بعضی خواص مکانیکی آلیاژ کاملاً مؤثر بوده و مورد لزوم است. این آلیاژها، در ساعت سازی دقیق برای ساختن رقاصک ساعت و فنرها به کار می روند و چون خاصیت مغناطیسی ندارند به فولادهای مشابه ترجیح داده می شوند.

آلومینیوم و مس دارای یک اتکتیک و یک اتکتوئید می باشند. فاز در سرما و گرما چکش خوار بوده و آلیاژ تا 4/9 درصد آلومینیوم در سرما به صورت فاز است. شبکه در گرما چکش خوار بودهولی تا حرارت 565 درجه سانتیگراد پایدار است و پس از آن تجزیه می شود. بدین ترتیب، شبکه در حالت تعادل در درجه حرارتی کمتر از 565 درجه نمی تواند وجود داشته باشد. وجود اتکوئید در دیاگرام تعادل دو فلز، امکان آب دادن آلیاژ را نشان می دهد و با آب دادن می توان شبکه را خارج از دامنه پایدار بودن خود در سرما نیز به دست آورد. در حالت عادی، فاز در درجه حرارت 565 درجه سانتیگراد تجزیه شده و تولید می کند که شبکه کاملاً سخت و شکننده است.

آلیاژهای مس- آلومینیوم، محتوی تا 5 درصد آلومینیوم، دارای جوش پذیری خوبی هستند اما وقتی درصد آلومینیوم تا 10 درصد افزایش پیدا می کند، آلیاژها ترد و سخت می شوند. آلیاژهای مس- آلومینیوم اغلب به صورت چندتایی بوده و با خود مقادیری آهن، نیکل یا منگنز دارند. هر سه عنصر گفته شده تأثیرات تقریباً نزدیکی روی آلیاژ مذکور دارند.

خواص مکانیکی این آلیاژها، تقریباً شبیه فولادهاست اما از مقاومت به خوردگی بسیار بالاتری برخوردارند. برای جوشکاری این آلیاژها، برداشتن لایه اکسید آلومینیوم سطحی از اهمیت ویژه ای برخوردار است، پس برای این منظور، استفاده از تمهیداتی که در بخش جوشکاری آلومینیوم ذکر شد، توصیه شده است. فاصله حرارتی انجماد آلیاژهای مس و آلومینیوم عملاً بسیار کم بوده و در نتیجه انقباض متمرکز حاصل در قطعه جوشکاری شده، نسبتاً عمیق خواهد بود و باید تدابیر لازم را در این مورد پیش بینی شود.

سیلیسیم

افزایش سیلسیم به مس باعث می شود که مقاومت به خوردگی آلیاژ بالا برود. مقدار سیلسیم در حدود 4 درصد توصیه شده است. این آلیاژ، در مقابل اسیدها و آمونیاک کاملاً مقاوم است و دارای خواص مشابه با برنزهاست ولی قیمت آن خیلی ارزان تر و سیالیت و خواص جوش پذیری بالاتری دارد. به طور کلی، اگر مقدار سیلیسیم در آلیاژ کم باشد (حدود 1/0 تا 5/0 درصد) روی خواص الکتریکی مس اثر نکرده ولی باعث افزایش خواص مکانیکی خواهد شد.

سیلیسیم با نیکل، ترکیب بین فلزی به فرمول Ni2Si می دهد که به طور یکنواخت در مس پخش شده و سختی آلیاژ را به حدود 200 برینل می رساند در حالی که استحکام کششی آن 60 تا 70 کیلوگرم بر میلی مترمربع خواهد بود. وجود مقادیری آهن نیز با ایجاد ترکیب بین فلزی Fe2Si باعث بهبود خواص مکانیکی فلزی خواهد شد. سیلسیم علاوه بر این، یک اکسیژن زدای موفق است.

فسفر

این عنصر، خواص مکانیکی مس را تقویت کرده ولی از مقدار هدایت الکتریکی آن می کاهد. فسفر در اغلب آلیاژهای مس به عنوان اکسیژن زدا به کار می رود و به دلیل افزایش شدید سیالیت، باعث ایجاد سطوح غیر یکنواخت می شود، به خصوص در مورد آلیاژهای محتوی، سرب، عملاً قادر به انجام اکسیژن زدایی نیست. مقدار فسفر مورد لزوم، معمولاً 02/0 تا 05/0 درصد است و جز در مورد آلومینیوم برنز، در سایر آلیاژها کم و بیش مورد استفاده قرار می گیرد. محصول فعل و انفعال فسفر (P2O5) به صورت گاز، علاوه بر اکسیژن زدایی، در خروج گازهای محلول نیز مؤثر است ولی از طرف دیگر، حذف شرایط اکسیدی در مذاب، باعث افزایش جذب هیدروژن خواهد شد. پس از القاء فسفر به آلیاژهای مس، همواره باید با افزایش سرعت جوشکاری و حفاظت کامل حوضچه جوش همراه باشد، تا از نفوذ مجدد هیدروژن جلوگیری شود.

لیتیم

لیتیم عنصر دیگری است که خاصیت اکسیژن زدایی آن تقریباً 10 برابر فسفر می باشد و علاوه بر احیاء اکسیدها، عمل اخراج گازهای محلول (هیدروژن) را نیز با تشکیل (هیدرورلیتیم) (LiH) تشدید می نماید. اشکال عمده فقط در نقطه ذوب LiO2 است که در شرایط جوشکاری به صورت بخار در می آیند.

کادمیم

کادمیم تأثیر چندانی بر هدایت الکتریکی مس ندارد ولی خواص مکانیکی آن را افزایش می دهد. آلیاژهای مس محتوی بیش از 25/1 درصد کادمیم به دلیل تشکیل اکسید کادمیم و افزایش نقطه ذوب آلیاژ، مشکلات کوچکی را برای جوشکاری قوس الکتریکی پدید می آورند که البته به سادگی مرتفع می شوند.

کرم

کرم عملاً بر خواص مقاومت الکتریکی مس تأثیری نداشته ولی خواص مکانیکی آن را افزایش می دهد. این عنصر، مانند برلیوم و آلومینیوم تولید اکسید مقاومی در سطح مس مذاب می کند. پس برای جوشکاری آلیاژهای مسی که محتوی کرم هستند، استفاده از گازهای محافظ حوضچه توصیه می شود.

به طور کلی، خاصیت هدایت الکتریکی و خواص مکانیکی، دو عامل متضاد بوده و عناصر اضافه شده به مس، باعث تقویت یکی و کاهش دیگری خواهد شد. باید در نظر داشت که هدایت الکتریکی مس خالص ماکزیمم بوده و اضافه کردن هیچ عنصری باعث بالا رفتن مقدار هدایت الکتریکی نمی شود.

آهن و منگنز

آهن اغلب به عنوان عنصر کمکی در آلیاژهای مس- آلومینیوم، مس- نیکل، برنج ها و برنزهای آلومینیوم به میزان 4/1 تا 5/3 درصد وجود دارد. آلیاژهای آهن دار، مس، نیازی به عملیات حرارتی بعدی ندارند زیرا وجود آهن سبب ریزدانه شدن آلیاژ شده و با تغییر در ساختار، تأثیر سرعت سرد شدن مذاب بر خواص مکانیکی را تقلیل می دهد. بنابراین وجود آهن به این مقدار تأثیری بر خواص جوش پذیری فلز ندارد.

منگنز در مس اثراتی مشابه اثرات نیکل دارد اما مقدار این تأثیرات، به مراتب کمتر است، بنابراین وجود منگنز در مقادیر 2 تا 3 درصد بر خواص جوش پذیری آلیاژهای مس تأثیری ندارد.


بررسی کارگاه جوشکاری

در ابتدا در شروع به کار در کارگاه جوشکاری یک جوشکار باید از ایمنی کامل برخوردار باشد تا آسیبی شامل حال جوشکار نباشد یک جوشکار باید به تمام وسایل ایمنی جوشکاری شامل ماسک جوشکاری پیش بند چرمی دستکش چرمی انبردست و عینک ها یکی برای جوشکار اکسی استیلن و دیگری عینکی که بیشتر برای گل زدن و کارهای فرزکاری استفاده می شود از گوشی نیز در مواقعی که کارهای پر
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 15 کیلو بایت
تعداد صفحات فایل 23
بررسی کارگاه جوشکاری

فروشنده فایل

کد کاربری 8044

گزارش کار

در ابتدا در شروع به کار در کارگاه جوشکاری یک جوشکار باید از ایمنی کامل برخوردار باشد. تا آسیبی شامل حال جوشکار نباشد. یک جوشکار باید به تمام وسایل ایمنی جوشکاری شامل: ماسک جوشکاری- پیش بند چرمی- دستکش چرمی- انبردست و عینک ها یکی برای جوشکار اکسی استیلن و دیگری عینکی که بیشتر برای گل زدن و کارهای فرزکاری استفاده می شود. از گوشی نیز در مواقعی که کارهای پر سر و صدا مانند سنگ زدن، چکش کاری و از این قبیل باید استفاده کرد. و از هر کدام از این وسایل متناسب با کاری که می خواهی انجام بدهی باید استفاده کرد مثلاً از عینک که برای جوشکار اکسی استیلن استفاده می شود نمی توان به جای ماسک جوشکاری استفاده کرد. یا برعکس و هر کدام از این وسایل اگر در جای مناسب و به موقع خود استفاده شوند مانع از بروز حوادث و آسیب به شخص جوشکار می شود. به عنوان مثال ماسک جوشکاری مانع از ورود اشعه های مضر به چشم جوشکار می‌شود. (اشعه ها فرابنفش مادون قرمز و …) و قابل ذکر می باشد که هنگام استفاده از جوشکار گازهای محافظ از ماسک های تنفسی مخصوص باید استفاده کرد. خود گازهای محافظ در حین جوشکاری پخش شده و از مسیر تنفسی انسان وارد ریه ها و شش ها می شود که بسیار خطرناک می باشد و اثرات سوء دارد که دیگر قابل جبران نمی باشد. اگر در مواقعی غیر جوشکاری گازهای محافظ از ماسک تنفسی استفاده شود، مانند جوشکاری برق یا اکسی استیلن بسیار بهتر می باشد.

در کارگاهی که کار می کنید باید مسائل ایمنی رعایت شده‌باشد. نظیر اینکه هواکش در کارگاه موجود باشد. پس از اینکه ایمنی کارگاه و خود مطمئن شدید، شروع به کار می‌کنید. در جوشکاری اکسی استیلن که از دو گاز استفاده می شود، یکی گاز سوختنی و دیگری اکسیژن می باشد. گازهای سوختنی که از منابع طبیعی- متان- اتان- بوتان- پروپان- آستیلن می باشد و در جوشکاری اکسی استیلن بیشتر از گاز سوختنی آستیلن استفاده می شود. زیرا بیشترین حرارت را در بین گازهای موجود ایجاد می کند. حرارتی معادل 3200.

اکسیژن از تجزیه آب یا تقطیر هوا بدست می آید. و اکسیژنی که از تقطیر هوا بدست می آید دارای کیفیت بهتری نسبت به اکسیژنی می باشد که از تجزیه آب بدست می آید. زیرا این اکسیژن دیگر دارای رطوبت (آب) نمی باشد. و استیلن از تماس سنگ کاربیت به اضافه آب استیلن به دست می آید. و هر دو گاز هر یک به طور جداگانه درون کپسولی قرار گرفته که کپسولها یا 40 لیتری می باشند یا 20 لیتری و بر سر هر کپسول رگلاتور قرار گرفته است. که رگلاتور اکسیژن با آستیلن متفاوت می باشد رگلاتور اکسیژن 150bar (بار) را نشان می دهد و رگلاتور آستیلن 15بار را نشان می دهد و این بیانگر آن می باشد که هر کپسول چه فشاری را تحمل می کنند و مقدار گاز درون کپسول می باشد. در مورد کپسول استیلن که در کنار آن یک کپسول کوچک قرار گرفته که آب درون آن می باشد و استیلن قبل از ورود به شلنگ از آن عبور می کند و این کپسول آب کوچک برای این می باشد وقتی که شعله از درون شلنگ بخواهد به کپسول استیلن برسد آب جلوگیری می کند و مانع از بروز حادثه می‌شود. قبل از رسیدن شلنگ ها به بک دو شیر بر سر آنها قرار داده می شود و هنگام کار آنها را باز می کنیم و شروع به کار می کنیم و در مورد استفاده از استیلن ما دارای سه شعله می باشیم: 1- شعله خنثی 2- شعله احیا 3- شعله اکسید.

1- شعله خنثی: در این شعله مصرف گازها یک به یک می باشد و برای جوشکاری مس- استیل- فولاد- آهن آلات صنعتی.

2- شعله احیا: در این شعله مصرف گازها برابر نبوده و مصرف گاز استیلن 2 الی 3 بیشتر از گاز اکسیژن می باشد و برای جوشکاری چدن- آلومینیوم- لحیم کاری سخت (برنج و نقره…).

3- شعله اکسید: در این شعله هم مصرف گازها برابر نبوده و مصرف گاز اکسیژن 2-3 بیشتر از گاز استیلن می باشد و عکس شعله می باشد. جوشکاری برنج

لحیم کاری خود به دو دسته سخت و نرم تقسیم بندی می شود. لحیم کاری زیر 450 درجه را لحیم کاری نرم و بالای 450 درجه را لحیم کاری سخت گویند.

لحیم کاری نرم بیشتر برای قلع و سرب استفاده می شود.

لحیم کاری سخت بیشتر برای مس- نقره- آلومینیوم و آلیاژهای آن.

تفاوت لحیم کاری و جوشکاری در این می باشد. در لحیم کاری جنس قطعات مختلف و حرارت برابر میله ذوب شدنی در جوشکاری سیم جوش و قطعات متحدالجنس گرما و حرارت برابر ذوب هر دو جنس کار.

قبل از هر چیز در جوشکاری استیلن طریقه مشعل روشن کردن را یاد گرفته اول استیلن را باز کرده و روشن می کنیم سپس اکسیژن را باز می کنیم و شعله را تنظیم می‌کنیم.

در جوشکاری استیلن اول باید طریقه درست کردن حوضچه مذاب را به طریق صحیح انجام داده و جوشکاری در گاز به طریق پیش دستی می باشد. پس از یادگیری درست کردن حوضچه مذاب طریقه جوشکاری در حالت های مختلف را یاد می‌گیریم حالت هایی مانند لب له لب، لب روی هم لبه برگردان و…. و بعد به دنبال انجام دادن لحیم کاری می رویم.

به این طریق عمل می کنیم که اول حوضچه را درست کرده و مفتول چسبیده به حوضچه و قطعه کار شعله را به جلو پیش می بریم. و طریق پیش بردن دست به طریقه جوشکاری پیش دستی می باشد. هنگامی که می خواهیم دو قطعه را به وسیله لبه برگردان به هم متصل کرد لبه هایی که برگردانده شده اند نیاز به مفتول نمی باشد. با درست کردن حوضچه می‌توان دو لبه را به یکدیگر اتصال داد. اگر نیاز باشد می‌توان آن طرف قطعه را به وسیله مفتول جوشکاری کرد. در هنگام جوشکاری حرکت دست به صورت هلالی به طرف جلو هدایت می شود. در جوشکاری سپری یک قطعه عمود بر قطعه دیگر قرار گرفته پشت آن را دو خال جوش در کناره ها زده و می توان یکی هم در وسط اضافه کرد.

طرف دیگر قطعه جوشکاری شود. انرژی حرارتی شعله باید بین دو قطعه کار به طور مساوی تقسیم شود تا در هر دو قطعه کار حوضچه تشکیل گردد. که بتوان مفتول را به طور مساوی در دو قطعه کار ذوب کرده و جوش مثلثی شکل مناسبی را تشکیل داد. در حالت سپری قطعه را می توان به صورت وی انگلیسی قرار داده و جوشکاری را انجام داد.

در جوشکاری لب به لب فاصله دو قطعه به اندازه قطر مفتول می باشد و در جوشکاری لب به لب انرژی حرارتی باید متمرکز بین دو قطعه باشد که در غیر این صورت باعث ذوب شدن بیشتر یک قطعه که منجر به سوراخی آن می گردد و یا اینکه قطعه دیگر خوب ذوب نشده و مفتول به درستی روی آن نشست نکرده و به صورت قطره قطره قرار می گیرد. در هنگام جوشکاری با گاز باید دقت کرد. که در پایان کار سرعت دست تا حدودی باید بالا برود در غیر این صورت قطعه کار را سوراخ خواهد کرد.

در جوشکاری لب روی هم زاویه دست باید طوری قرار بگیرد که هم بر روی قطعه پایینی حوضچه درست کند و هم برای قطعه‌ای که روی آن قرار گرفته است و زاویه‌ای در حدود 45 درجه بین قطعه کار به وجود بیاورد.

قابل ذکر می باشد که هنگام استفاده از ورق های مختلف از سربک‌های مختلف باید استفاده کرد.


لحیم کاری:

لحیم کاری چسبندگی می باشد که بین دو یا سه قطعه مختلف الجنس می باشد. لحیم کاری بیشتر در کارهایی که زیبایی مد نظر باشد در کارهای تعمیراتی استفاده می‌شود. در لحیم کاری از یک روانساز (فلاکس) استفاده می شود این به خاطر پایین بودن سیالیت سیم لحیم می باشد. اتصال در لحیم کاری از خاصیت چسبندگی سیالیت خاصیت موئینگی استفاده می شود. در لحیم کاری از شعله احیا استفاده می شود.

در لحیم کاری مفتول را گرم کرده در فلاکس زده و مفتولی را بر روی قطعه کار گرفته و با شعله که روی مفتول است مفتول به وسیله فلاکس به قطعه چسبیده و با وسیله شعله رو به جلو مذاب را هدایت می کنیم.

جوشکاری برق:

در جوشکاری برق باید به این نکات توجه داشت آمپر مناسب، قطب مورد نظر مستقیم یا معکوس نوع الکترود. چه از نظر ساختار روپوشی و مفتولی چه از نظر قطر الکترود. از چه جریانی استفاده شود. مستقیم یا متناوب هر کدام که جوش بهتری را به ما می دهد. در جوشکاری باید متناسب با ضخامت ورق از قطر مورد نظر الکترود و آمپر مناسب استفاده کرد تا جوشی بدون هیچ عیب و نقصی برای جوشکار به وجود بیاورد و باید توجه داشت که الکترود موجود حالت های جوشکاری مورد نظر تو را برآورده می کند یا نه. به عنوان مثال می توان سربالا یا سقفی با آن جوش داد یا نه. و عامل دیگر طول قوس مناسب می باشد که بیشتر طول قوس را برابر با قطر الکترود می گیرند و در پایان کار به این نکته نیز خوب است توجه داشت تا هنگامی که جوش سرخ است و سرخی خود را از دست نداده است گل جوش را جدا نکید زیرا گل جوش در حال محافظت از جوش می باشد. نرخ سرد شدن را کاهش داده تا گازها از جوش جدا شوند.

جوشکاری چدن:

برای جوشکاری چدن باید از عوامل به وجود آورنده تنش در چدن باید جلوگیری کرد. برای همین خاطر می باشد که قبل از جوشکاری چدن به آن پیش گرما داده و بعد از جوشکاری آن را تنش زدایی می کنند. قبل از جوشکاری قطعه، قطعه را از تمام ناپاکی های سطح تمیز کرده و اگر مقدور باشد می توان سطح را با سوهان زدن صاف کرده و اگر جوش شیاری می باشد وبدون پشت بند انجام خواهد شد به آن پاشنه می‌دهیم یعنی پاشنه می زنیم و طریقه جوشکاری چدن به این طریق می باشد. بعد از پیش گرما (پیش گرما طوری باشد که از فاصله 5 سانتی متری به دست برسد) بر روی قطعه به طول 25 الی 35 میلی متر جوشکاری می شود. و باید توقف کرده و تنش زدایی صورت بگیرد. و تنش زدایی به این صورت که اطراف جوش بالا و پایین را چکش کاری کرده و روی جوش به صورت 45 درجه چکش کاری شود و بعد از آن از طرف دیگر قطعه شروع کرده و به این طریق جوش داده و تنش زدایی می کنیم بعد به وسط قطعه رفته به این روال انجام داده تا جوش ما به پایان برسد.

برای جوشکاری چدن از دو الکترود استفاده می شود. یکی EFST (AWS) و دیگری ENi.C1.

الکترود EFST: غیرقابل براده برداری می باشد و فقط با سنگ الماسه می توان و بیشتر برای از بین بردن خرابی در ریخته گری استفاده می شود. اتصال چدن به فولاد و حالت جوشکاری سرپایین و تخت می باشد. جریان مستقیم با قطب مستقیم.

الکترود ENi.C1: الکترود نیکلی خالص که بر روی چدن چکش خوار داکتیل و سایر انواع چدن واتصال چدن به فولاد و اتصال روکش مناسب بوده و برای برطرف کردن موک و اشتباهات ضمن کار بسیار عالی می باشد نوع جریان متناوب مستقیم با قطب مستقیم حالات جوشکاری تمام حالات به جزء سرازیر.



بررسی جوشکاری با قوس الکتریکی در پناه گاز محافظ

تجربه نشان داده که درصورتیکه بتوانیم از ورود هوا به منطقه جوش پیشگیری کنیم جوش از خواص شیمیائی و فیزیکی بهتری برخوردار خواهد بود در این جا کلمه هوا به مخلوطی از گازهای اکسیژن هیدروژن نتیتروژن و بخار آب که همگی باعث کاهش کیفیت جوش می شوند اطلاق می گردد باید اضافه کرد که اکسیدهای فلزی و گرد و غبار و ذرات پراکنده در هوا نیز باعث کاهش کیفیت جوش می گرد
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 25 کیلو بایت
تعداد صفحات فایل 47
بررسی جوشکاری با قوس الکتریکی در پناه گاز محافظ

فروشنده فایل

کد کاربری 8044

جوشکاری با قوس الکتریکی در پناه گاز محافظ

تجربه نشان داده که درصورتیکه بتوانیم از ورود هوا به منطقه جوش پیشگیری کنیم جوش از خواص شیمیائی و فیزیکی بهتری برخوردار خواهد بود. در این جا کلمه هوا به مخلوطی از گازهای اکسیژن هیدروژن نتیتروژن و بخار آب که همگی باعث کاهش کیفیت جوش می شوند اطلاق می گردد. باید اضافه کرد که اکسیدهای فلزی و گرد و غبار و ذرات پراکنده در هوا نیز باعث کاهش کیفیت جوش می گردند.

در بسیاری از مراحل جوشکاری با قوس الکتریکی و همچنین لحیم کاری و لحیم کاری سخت گازهای حاصل از سوختن پوشش الکترودها و همچنین گازهائی که مخصوص این کار پیش بینی شده اند از ورود و تماس هوا و دیگر عناصر مضر به منطقه جوش جلوگیری می کنند.

اصول اساسی جوشکاری با قوس الکتریکی در پناه گاز محافظ

اصول کار این طریقه جوشکاری بسیار ساده است. الکترودگیر که در اینجا به آن تفنگ یا مشعل هم گفته می شود طوری طراحی شده که علاوه برالکترود جریانی از یک گاز خنثی مانند بی اکسیدکربن هلیوم یا آرگون را نیز از خود عبور می دهد.

غرض اصلی از استفاده از یک گاز محافظ درخلال جوشکاری درامان نگهداشتن فلز مذاب از ورود و تماس اکسیژن هوا و سایر گازهای مزاحم موجود در آن به منطقه جوش می باشد. در این طریقه با حذف اکسیداسیون وسیار ناخالصی های موجود جوشکاری بر روی فلزاتی که با سایر طرق جوشکاری غیرممکن و یا بسیار دشوار است ممکن می گردد. این طریقه جوشکاری با روش دستی خودکار و نیمه خودکار مرسوم و متداول است. در این قسمت روشهای دستی و نیمه خودکار مورد بررسی قرارگرفته و بحث درباره طریقه اتوماتیک به بخش دیگری موکول می شود.

درموقع کار با این روش جوشکاری گازی که از داخل الکترودگیر عبور می کند و اطراف الکترود را در برمی گیرد به محض خروج از الکترودگیر آتمسفر محیط را با فشار پس زده و الکترود قوس و منطقه مذاب را از ورود هوای اطراف در امان نگهمیدارد.

جوشکاری یا قوس الکتریکی در پناه گاز خنثی سه مزیت اساسی نسبت به جوشکاری ساده با قوس الکتریکی دارد. این مزایا عبارتند از:

  1. سرعت عمل بسیار زیاد است.
  2. جوش خیلی تمیزتر است.

3. جوشکاری فلزاتی که با سایر روشها غیرممکن یا دشوار است ممکن می گردد.

یکی از مزایا سرعت مل کاهش تلفات و صرفه جوئی در وقت است. درصد تقریبی هزین ها بشرح زیرمی باشد:

الکترود تنگستن (اگر مصرف شود) 3%

انرژی الکتریکی 5%

گاز محافظ 92%

باین تریتب ملاحظه می شود که عمل کرد این روش بمراتب سریع تر از جوشکاری معمولی باقوس الکتریکی می باشد و البته بدیهی است که صرفه جوئی درتعداد وساعت کار کارگر نیز قابل توجه بوده و تولید بسیار زیاد خواهد بود همچنین در این روش چون نیازی به تمیز کردن تفاله جوش نیست. در زمان و مزدکارگر باز هم صرفه جوئی خواهد شد.

انواع روشهای جوشکاری با گاز خنثی

انواع روشهای جوشکاری مورد استفاه و مرسوم بشرح زیر می باشند:

الف. جوشکاری با قوس الکتریکی با الکترود از جنس تنگستن (TIG یا GTAW) که اصطلاحا آن را تیک خواهیم نامید.

ب. جوشکاری با قوس الکتریکی با الکترود فلزی (MIG یا GMAW) که آنرا میگ می نامیم.

ج. حوشکاری با قوس الکتریکی و بوسیله الکترود زغالی (CIG یا GCAW) که آنرا سیگ می نامیم.

د. جوشکاری با قوس الکتریکی به طریقه نقطه جوش GASW بهرحال درمجموع برای عبور جریان الکتریسیته سه روش پیشنهاد شده است:

  1. جریان مستقیم با پلاریته مستقیم (DCSP)
  2. جریان مستقیم با پلاریتهن معکوس (DCRP)
  3. جریان متناوب (AC)

یونها ملکول های یک گاز می باشند که بصورت ذرات باردار (الکتریکی) در می آیند.

این عملیات قسمتی از تئوری الکترونی می باشند. در روش DCSP نفوذ بسیار عالی است چون جریان حرکت الکترون ها بطرف قطعه کار بوده و درنتیجه گرما را بر روی آنت متمرکز می کند.

اگر از روش DCSP استفاده کنیم کار بسیار تمیز خواهد بود ولی نفوذ خیلی زیادنمی باشد زیرا بیشتر گرما در روی الکترود تنگستن (آند) یا سیم جوش ایجاد خواهد شد. بلافاصله ملاحظه می شود که استفاده از این طریقه برای جوشکاری بر روی قطعات آلومینیومی منیزیمی و سایر موادی که جوشکاری آنها مشکل است بسیار مفید می باشد (در این حالت باید از الکترودی از جنس تنگستن استفاده نمود). اگر از جریان متناوب با فرکانس بالا (ACHF) استفاده شود هم نفوذ خوب بوده و هم کار تمیز خواهد ماند.

درموقع استفاده از روش (MIG) GMAW جریان گرمائی قوس متغیر است زیرا الکترود فلزی ذوب شده و قطرات مذاب از قوس عبور کرده و به منطقه جوش سقوط می کنند. این روش جوشکاری اغلب با طریقه DCRP صورت می گیرد. در این حالت قوس بسیار تمیز بوده و فلز جوش با سرعت بر روی قطعه کار ته نشین می شود. البته در این حالت جریان الکتریکی نسبتا زیاد لازم است تا فلزمذاب را به صورت پودر در آورده و آنرا بر روی قطعه کار ته نشین نماید. به این ترتیب میزان انتقال* زیاد شده و کنترل و دقت قوس افزایش می یابد. عین همین عمل را می توان درباره فلزات نازک انجام داد. در این حالت فقط کافی است شدت جریان را کاهش دهیم.

بحث بیشتر در این مورد را به صفحات بعد موکول می کنیم.

جوشکاری با قوس الکتریکی درپناه گاز خنثی و با الکترودی از جنس تنگستن GTAW (TIG)

دراین حالت از یک الکترود مصرف شدنی از جنس تنگستن استفاده می کنند. این الکترود در داخل یک الکترودگیر مخصوص که ضمنا از میان خود جریانی از یک گاز خنثی را نیز عبور می دهد قرارمی گیرد. درحقیقت اصول کار به این ترتیب است که قوس الکتریکی بین کارو تنگستن در محیطی که از یک گاز خنثی (از قبیل هلیوم آرگون دی اکسیدکربن یا مخلوطی از گاز محافظ) آکنده است صورت می گیرد.

درحقیقت اصول کار به این ترتیب است که قوس الکتریکی بین کار و تنگستن درمحیطی که از یک گاز خنثی (از قبیل هلیوم آرگون دی اکسیدکربن یا مخلوطی از گاز محافظ) آکنده است صورت می گیرد.

در فصل بعدی انواع گازهای محافظ وموارد استفاده هریک توضیح داده خواهد شد و تشریح خواص فیزیکی و شیمیائی آنها به فصول بعدی موکول می گردد. اگر لازم باشد فلز پرکننده را می توان به منطقه جوش اضافه نمود.

مرتب کردن یک کارگاه جوشکاری TIG

یک کارگاه کامل TIG شامل لوازم و تجهیزات نیز خواهد بود:

کابین جوشکاری – سیستم تهویه – میزکار – دستگاه قوس الکتریکی – سیلندرگازمحافظ – رگولاتورسیلندر و جریان سنج – لوله گازمحافظ – کابل الکترود – کابل زمین – مشعل مخصوص برای نگهداری تنگستن (با سیستم خنک شونده بوسیله هوا) و شیر قطع و وصل گاز.

البته تمام این تجهیزات فقط برای سیستمی که به توسط هوا خنک شود مناسب می باشند.

درصورتی که مشعل به وسیله آب خنک شود دستگاه های اضافی زیر نیزلازم می باشند:

شیرآب – لول برای انتقال آب – لوله ای برای تخلیه و انتقال آب خروجی به فاضلاب – و الکترودگیر مخصوص تنگستن که بوسیله آب خنک می شود.

بیشتر اوقات لوله آب و گاز و کابل جوشکاری دریک لوله واحد دیگر جاسازی می شوند.

معمولا جریان آب خروجی را از میان کابل الکترود عبور می دهند. خنک کنندگی آب این امکان را می دهد که از کابل های نازکتری استفاده کنیم تا وزن مشعل سبک تر شده و قابلیت انعطاف آن افزایش یابد.به سیستم کنترل پائی شدت جریان (که درفصل دوم توضیح داده شده) و همچنین جریان عبور گاز (رگولاتور گاز و گازسنج) که نسبت به شرایط جوشکاری قابل تنظیم می باشد توجه داشته باشید.

کابین جوشکاری و طریقه تهویه آن نیز در فصل دوم توضیح داده شده و دراین جا نیازی به تکرار آن نیست.

باید توجه داشت که چون قوس الکتریکی برای چشم و سایر اعضای بدن مضر است، حتماَ باید کارگر را به تجهیزات حفاظتی مناسب،مجهز نمود.

میز کار جوشکاری نیز می‌تواند متناسب با نوع کار از نوع موتور- ژنراتور یا یکسوکننده باشد. اغلب ماشین‌های جوشکاری به سیستمی مجهزند که بخصوص در شروع قوس، مدار از جریان بسیار زیادی که فرکانس بالائی هم دارد برخوردار گردد.

سیلندرگازی که در این‌جا مصرف می‌شود بسیار شبیه سیلندر اکسیژنی است. طرز استفاده و مراقبت‌های یادآوری شده درمورد دستگاههای مربوط به قوس‌الکتریکی را در اینجا نیز باید رعایت نمود.

یادآوری می‌شود که در این جا مصرف گاز به طریق دیگری سنجیده میشود. برخلاف مقیاسات psig در این جا مصرف رابرحسب فوت مکعب در ساعت ( میزان کمی جریان) برآورد می‌کنند.

مقیاسی که بر روی لوله مدرج ثبت شده میزان عبور جریان گاز برحسب فوت مکعب در ساعت را نمایش می‌دهد.

کابل برحسب فوت مکعب در ساعت را نمایش می دهد.

کابل ولوله‌ها و نحوه اتصال آنها با چیزی که در فصل چهارم در مورد سایر دستگاه‌های جوشکاری گفته شده تفاوتی ندارد.

قبل از روشن کردن ماشین باید مطمئین شدکه تمام اتصالات الکتریکی، آب و گاز محکم و تمیز هستند.

تنها تفاوتی که در این‌جا ملاحظه می‌شود مشعل یا الکترودگیر است.

راه‌اندازی یک کارگاه جوشکاری TIG

قبل از شروع به کار، کارگاه باید کاملا مورد بازرسی قرار گیرد. اتصالات کلیه مدارهای الکتریکی باید محکم و پاکیزه باشند. سیلندر گاز باید بطور مطمئنی در جای خود تثبیت شده باشد تا خطری متوجه کارکنان کارگاه و خود سیلندر نشود.

تنظیم آمپراژ برای الکترود تنگستن در مورد جوشکاری فولاد معمولی و فولاد ضدرنگ داده شده است. جریان متناوب برای جوشکاری الومینیوم را مشخص می‌کند.

برای این کار اغلب از روشDCRP استفاده میکنند. در صورتیکه از روش DCRP استفاده شود شدرت جریان باید بین تا مقدار استفاده شده در روش DCSP باشد.

تنظیم وتناسب شدت جریان با ضخامت قطعه کار، شبیه دستورات داده شده در مورد جوشکاری معمولی با قوس الکتریکی است.

سوراخ الکترودگیر باید متناسب با اندازه الکترود تنظیم و انتخاب شود و به همین ترتیب میزان شدت جریان و اندازه عبور جریان گاز نیز باید به نسبت آنها کم و زیاد شود.

بهرحال همیشه از دستورات کارخانه سازنده دستگاه یا الکترود پیروی کنید.

الکترودگیر ومیزان عبورجریان متناسب باهر یک داده شده است. البته باید توجه داشت که تغییرات مزبورناشی از کم وزیاد کردن دستگاه مراحل زیر را تعقیب کنید:

ابتدا مطمئن شوید که جریان گاز وآب ( در صورتیکه سیستم با آب خنک می شود) در لوله‌ها جاری بوده و یا شیر آنها باز است. این سیالات بوسیله شیرهای دستی که در داخل الکترودگیر ویاقلاب آن تعبیه شده، تنظیم می شوند. در برخی موارد، کنترل عبور جریان خودکار بوده و به توسط رله الکتریکی و شیرهای سلونوئیدی صورت میگیرد.

درهر دو صورت میزان عبور جریان آب و گاز را تنظیم کنید. میزان معمولی جریان آب در هر ساعت بین 12 تا 23 گالن می باشد. اندازه‌گیری مهمی که در این مرحله باید صورت گیرد این است که افزایش دمای آب باید فقط 10 درجه فارنهایت باشد. نسبت های مربوط به عبور جریان گاز نوک الکترود تنگستن باید بخوبی شکل داده شده باشد تا نتایج خوبی به دنبال داشته باشد. در مورد جریان متناوب انتهای الکترود باید بصورت کروی بوده و در روشDCSP نوک التکرود بهتر است تیز شده باشد.

نکته ای که یاداوری ان کاملا ضروری به نظر می رسد اینکه، در موقع کار با جریان متناوب توجه داشته باشید که الکترود طوری در داخل الکترو‌گیر نصب شود که نوک گرد آن در طرف ایجاد قوس واقع شود.

در غیراینصورت اگر کارگر طرف گردکند، در آوردن الکترود از داخل کلت مشکل و گاهی اوقات غیر ممکن بوده و در این حال تنها راه چاره شکستن الکترود است. در هر حالی الکترود باید کاملا مستقیم و یکنواخت باشد و در صورتیکه نوک آن تیز شده. تیزی باید کاملا متحدالمرکز باشد زیرا در غیر اینصورت جریان گاز محافظ بصورت یکنواخت قوس را تغذیه نخواهد کرد.

هنگام استفاده از جریان متناوب،‌برای گرد کردن نوک الکترود، از روش DCRP استفاده کرده و قوس را برای یک لحظه بر روی یک تکه زغال یا مس روشن کنید. قطر کره ایجاد شده در نوک الکترود تنگستن فقط باید کمی بیشتراز قطرالکترود باشد.

ایجاد قوس

برای جریان متناوب، سیستم به فرکانس فوق‌العاده زیادی نیاز دارد. برای روشن کردن قوس، الکترودگیر را در وضعیت افقی بالای کار نگهداشته و الکترود را به سرعت به کار طوری نزدیک کنید که فاصله نوک الکترود تاسطح کار حدود اینچ شود. در جریان متناوب، فرکانس جریان آنقدر زیاد است که فاصله مزبور فورا با قوس الکتریکی پر میشود.

اگر از جریان DC استقاده کنیم نوک الکترود تنگستن باید سطح کار را لمس کرده و سپس عقب کشیده شود.

برای تمرین بهتر است الکترود تنگستن را ابتدا بر رویی یک قطعه از جنس تنگستن فرود بیاوریم و یا در غیر این صورت از یک الکترود مستعمل استفاده کنیم تا الکترود تازه، کثیف وخراب نشود.

تمام ماشین‌های جوشکاری که برای این طریقه جوشکاری طراحی شده‌اند ( چه AS و چه DC یا هر دو) مدار خاصی دارند که در شروع کار فرکانس زیادی را در مدار جاری می سازند.

در ماشین‌های مختلف ،‌این مدار، بصورتهای متنوعی ارائه میشود. در صورتیکه ماشین برای استفاده با جریان متناوب پیش‌بینی شده باشد، این جریان‌ با فرکانس زیاد بصورت دائمی ادامه پیدا خواهد کرد. در ماشین‌های مخصوص جریان DC، یک رله الکتریکی، جریان با فرکانس زیاد را بلافاصله پس از ایجاد قوس، قطع می نماید.

قبل از شروع جوشکاری بر روی کار اصلی، بهتر است مشعل را به کار در روی یک قطعه زائد گرم کنیم. در نتیجه این عمل، الکترود در دهانه الکترودگیر گرم شده و نتایج خوبی از خود بجا خواهد گذاشت.

سیم جوش پر کننده و الکترودگیر برای جوشکاری در وضعیت تخت نمایش داده شده است.

طولی ازالکترود تنگستن که بیرون از الکترودگیر می ماند باید با قطر الکترود مساوی باشد. برای جوش گوشه‌ای، این اندازه باید کمی بیشترباشد. هر چه طول الکترودی که از دهانه الکترودگیری بیرون است بیشتر باشد اثر گاز محافظ کمتر خواهد بود.

طرز کار جوشکاری به روش GTAW ( TIG)

چه از جریان متناوب استفاده شود و چه طریقه DCRP بکار رود، استفاده از این روشهای جوشکاری این حس‌را دارد که قطعه کار از پاکیزگی زیادی برخوردار خواهد بود.

و به این لحاظ است که اینگونه مدارهای الکتریکی را بیشتر برای جوشکاری قطعات آلومینیوم و فولاد ضد زنگ بکار می‌برند. این عمل اثر پاکیزگی کاتدی[1]( در تمام یاقسمتی از زمان جوشکاری ، کار در قطب منفی است) نامیده می شود. در صورتیکه پاکیزگی از اهمیت بیشتری برخوردار باشد بهتر است از گاز آرگون استفاده شود.

اگر چه باید توجه داشت که در این حالت باید قبل از شروع جوشکاری کار را کاملا تمیزنمود.

برای تمیز کردن آلومینیوم ابتدا سطح آن را با برسی از جنس فولاد ضدزنگ پاک کرده و گردزدائی می‌کنند و سپس با استفاده از آستون، آن را به طریق شیمیائی نیز تمیز می نماید. توجه داشته باشید که آستون فوق العاده قابل اشتعال است.

در این مورد یک ساعت قبل از جوشکاری، از آستون استفاده کنید.

برای کسب نتیجه بهتر توصیه می شود که قبل از جوشکاری آلیاژهای فولاد آنها را تا60 درجه فارنهایت گرم کنید. برای از بین بردن بخارات و ذرات مزاحم، قبل از جوشکاری آلومینیوم باید آنرا تا 120 درجه فارنهایت گرم کرد.

اگر جوشکاری در چند مرحله صورت می‌گیرد، بین هر مرحله باید اجازه داد تا کار خنک شود. اگر جنس کار از فولاد باشد توصیه می شود که تا دمای کار به 350 درجه فارنهایت نرسیده، مرحله بعدی را آغاز نکنید. در مورد آلومینیم دمای 300 درجه فارنهایت پیشنهاد میشود.

همانطوری که گفته شد برای محافظت حوضچة‌ مذاب و منطقه جوش از گاز محافظ استفاده می‌کنند. برای انجام یک جوشکاری مناسب، کمی قبل از روشن کردن قوس، جریان گاز را برقرار کنید. در موقع جوشکاری مخازن و محفظه‌های سربسته، ابتدا مجرائی برای خروج گازها پیش‌بینی کنید تااز ایجاد فشارهای اضافی پیشگیری شود.

گاهی اوقات در شروع جوشکاری، کار با اشکال مواجه شده و جوش داده شده زیاد جالب نخواهد بود. برای درک این موضوع بهتر است از یک ذره بین استفاده نمائید. پس از کشف محل ترک‌ها، بوسیله سنگ فییبری و قلم و چکش جوش‌های ترک‌دار را کنده‌ و محل مزبور را با جوش مجدد پرکنید.

بعضی وقت‌ها هم گرمای بیش از اندازه موجب ایجاد ترک در جوش میشود. در این حالت هم جوش‌ها را به روش گفته شده کنده و محل آنها را دوباره جوش بدهید.

انتهای حالت هم پس از بررسی اگر به ترک یا اشکال مشابهی برخورد کردید. آنها را کنده‌ و محل آنها را دوباره جوش بدهید. در موقع جوشکاری لوله، حتی الامکان از مراحل کوتاه مدت اسفتاده کرده و بتناوب نقاط مختلف پیرامون لوله را خال جوش بگذارید. برای مثال برای جوشکاری لوله های کمتر از 16 اینچ (قطر) طول هر مرحله


بررسی روشهای مختلف جوشکاری با برق

به طور کلی در دو طریقه جوشکاری ، برق منبع اصلی انرژی تلقی میشود ، یکی جوشکاری با قوس الکتریکی و دیگری جوش مقاومتی و یا نقطه جوش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 35 کیلو بایت
تعداد صفحات فایل 65
بررسی روشهای مختلف جوشکاری با برق

فروشنده فایل

کد کاربری 8044

روشهای مختلف جوشکاری با برق


جوشکاری با برق مستقیم

روش های مختلف جوشکاری:

به طور کلی در دو طریقه جوشکاری ، برق منبع اصلی انرژی تلقی میشود ، یکی جوشکاری با قوس الکتریکی و دیگری جوش مقاومتی و یا نقطه جوش .

جوشکاری با قوس الکتریکی بر این اساس پایه گذاری شده است که وقتی جریان الکتریسیته از شکاف موجود بین دو قطب مثبت و منفی عبور می کند فضای گازی شکل ما بین آن دو را گرم کرده و گرمای بسیار زیاد و متمرکزی را ایجاد می نماید .

دمای جرقه ایجاد شده بین دو قطب مزبور در محل قوس الکتریکی بین 6500 تا 7000 درجه سانتی گراد است . از این خاصیت قوس الکتریکی در موارد زیر استفاده میشود :

1- جوشکاری با قوس الکتریکی به وسیله الکترودهای زغالی

2- جوشکاری با قوس الکتریکی به وسیله الکترودهای فلزی

3- جوشکاری با قوس الکتریکی به کمک گاز اضافی

4- جوشکاری با قوس الکتریکی بروش Atomic Hudrogen

5- جوشکاری با قوس الکتریکی به کمک گاز خنثی و تنگستن

آنچه که در این فصل مورد بحث قرار می گیرد جوشکاری به کمک برق مستقیم است که اختصا را جوشکاری DC نامیده میشود .

مبانی جوشکاری با برق :

انجمن آمریکائی جوشکاری ، جوشکاری با قوس الکتریکی را به شرح زیر تعریف می کند:

جوشکاری پدیده یا تحولی و با استفاده از فشار و فلرات پرکننده و یا حتی بدون استفاده از آنها باعث پیوسته شدن و دره آمیخته شدن قطعات مختلف میشود .

در جوشکاری یا الکترود فلزی ما بین قطعه جوش دادنی و الکترود فلزی ، قوس الکتریکی برقرار میکنند. در این روش الکترود فلزی را در یک گیره مخصوص قرار داده و فلز جوش دادنی را طوری در مدار الکتریکی قرار می دهند که با نزدیک شدن نوک الکترود به سطح کار ، مسیر مدار تکمیل گردد .

برای انجام یک جوشکاری خوب . جوشکار باید با موارد زیر آشنا باشد :

1- دستگاه جوشکاری و مدار آن

2- الکترود و خصوصیات آن

3- مهارت در ایجاد قوس الکتریکی

ژنراتور یا مولد DC دستگاهی است که به کمک آن برق جریان مستقیم را تولید میکنند . جریان الکتریکی ایجاد شده باید طوری باشد که پس از عبور از کابل های تشکیل دهنده مدار بتواند بین الکترود و قطعه کار یک منطقه مذاب ایجاد نماید . قسمت مذاب الکترود وارد منطقه مذاب می شود و مجموعا فطعه جوشکاری شده را ایجاد نماید .

جریان خروجی ماشین و جهت حرکت آن ، بسته به نوع کار مورد نظر ، توسط جوشکار انتخاب میشود . الکترود مصرفی ممکن است آهنی یا آلیاژی از آهن باشد . در بعضی از الکترودها مخلوطی از مواد غیر آهنی نیز یافت میشود . الکترودها در انواع مختلفی ساخته و عرضه میشوند . بعضی از آنها لخت ، بعضی با پوشش نازک و دسته ای با پوشش کلفت تهیه میشوند . مشکل ترین طریقه ، استفاده از الکترود لخت است و مرغوبیت جوش به دست آمده نیز با قطعه مشابهی که بوسیله الکترود پوشش دار جوشکاری شده باشد قابل مقایسه نیست . یک پوشش نازک میتواند ثبات قوس الکتریکی را افزایش دهد . پوشش کلفت الکترود بقوس الکتریکی ثبات قابل ملاحظه ای میبخشد و ناخالصیهای موجود در منطقه مذاب را به بیرون هدایت کرده و ضمن سوختن باعث ایجاد گازهای خنثی میشود که این نیز سطح خارجی و مذاب منطقه جوش را از خطر اکسیداسیون محفوظ نگه میدارد.

پوشش کلفت الکترودها علاوه بر محافظت فلز جوش دادنی از خطر اکسیداسیون ، باعث سخت شدن سطحی قطعه کار نیز میشوند .

الکترودها را در قطرهای مختلفی تهیه میکنند . وقتی ضخامت قطعه کار تغییر کند متناسب با آن ، قطر الکترود و شدت جریان مدار نیز تغییر خواهد کرد . وقتی از پشت ماسک جوشکاری به منطقه مذاب نگاه کنیم دو قسمت مجزا مشهود خواهد بود : یکی جریان قوس و دیگری شعله قوس .شعله قوس که از گازهای خنثی تشکیل شده قرمز کمرنگ است . فلز تبخیر شده موجود در جریان قوس ، زرد و فلز مذاب آن سبز رنگ است .

وقتی اکسیژن و نیتروژن هوا بداخل منطقه جوش نفوذ کنند باعث تضعیف و شکنندگی آن می شوند . ولتاژ مصرفی نیز خیلی مهم است بطوری که افزایش ولتاژ باعث طویل شدن شعله و افزایش میزان سیلان الکترود خواهد شد . هر گاه پیشروی کار خیلی سریع باشد گرده جوش به خوبی نفوذ نکرده و حرکت کند آن نیز باعث برجستگی بیش از حد گرده جوش خواهد شد .

هرگاه شدت جریان و طول قوس بصورت متناسبی انتخاب شوند نتیجه جوشکاری بسیار خوب خواهد بود . ولتاژ و آمپراژ مناسب برای جوشکاری های مختلف را میتوان از جداول موجود استخراج نمود . انتخاب طول شعله مناسب به عهده جوشکار است .


اصول جوشکاری با قطب مستقیم (DCSP) :

تجربه نشان داده که الکترون ها پس از عبور از قطب منفی ( گاتد ) ماشین به طرف الکترود می روند . سپس الکترونها ادامه مسیر داده و از طریق قوس و قطعه کار بطرف قطب مثبت ماشین ( آتد ) می روند .

تقریبا در حدود حرارت ایجاد شده در این طریقه ، در فلز اصلی و آن در الکترود توزیع میگردد . انتخاب این طریقه جوشکاری به عوامل متعددی بستگی دارد .

جنس فلز اصلی ، وضعیت جوشکاری ، جنس الکترود و مواد پوششی آن از عوامل این انتخاب هستند . اطلاعات اضافی در مورد چگونگی انتخاب جوشکاری با قطب مستقیم در فصل دوم داده خواهد شد .

اصول جوشکار با قطب معکوس (DCRP) :

گاهی اوقات ناچاریم که مسیر حرکت الکترونها را در مدارد جوشکاری معکوس کنیم .در جوشکاری باقطب معکوس ، الکترونها از قطب منفی ( کاتد) دستگاه شروع به حرکت کرده و به طرف قطعه گاز می روند. الکترونها از طریق الکترود جوش به قطب مثبت باز می گردند . در این حالت یک سوم حرارت ایجاد شده از قوس در قطعه گاز و آن در الکترود توزیع می گردد.

به این ترتیب با توجه به این که گرمای حاصله در الکترود توزیع می شود ، فلز الکترود و گازهای محافظ بسیار گرم می شوند. این گرمای زیاد ، سرعت عبور فلز ذوب شده را افزایش داده و فلز مزبور با سرعت بسیار زیادی از منطقه قوس الکتریکی عبور می کند. نیروی ناشی از ازدیاد سرعت سقوط فلز مذاب باعث ایجاد گودی در منطقه مذاب می گردد. در نتیجه این عمل ، فلز ذوب شده از نوک الکترود با ضربه محکمی به منطقه مذاب برخورد می کند. انتخاب این طریقه جوشکاری نیز به عوامل متعددی از قبیل جنس قطعه کار ، وضعیت جوش ، جنس الکترود و پوشش آن بستگی دارد .

اطلاعات اضافی در مورد چگونگی انتخاب این طریقه جوشکاری در فصل دوم داده میشود.

ایمنی ، لباس های حفاظتی و وسائل دیگر :

قبل از شروع آموزش عملیات جوشکاری با قوس الکتریکی مطالب این قسمت را باید با دقت کافی مطالعه کرد . در موقع جوشکاری با قوس الکتریکی اگر لوازم و دستگاه های ایمنی مناسبی بکار برده شوند ، خطر جدی جوشکار را تهدید نخواهدکرد. اگر چه باید افراد مبتدی را آگاه کرده و مراحل صحیحج جوشکاری را به آنها آموخت تا در صورت مشاهده یا بروز حوادث احتمالی ، نحوه پیشگیری از آنها را بدانند . خطرات اصلی به شرح زیر هستند:

1- تشعشع اشعه ماورا بنفش و مادون قرمز

2- پاشیدن جرقه از منطقه مذاب

3- بروز شوک الکتریکی

4- ایجاد و استشمام دود و گازهای مختلف

5- آتش سوزی

تشعشع اشعه از منطقه قوس الکتریکی خطرات زیادی به دنبال دارد . در موقع جوشکاری ، چشم های کارگر حتما باید در پشت یک ماسک جوشکاری با شیشه مناسب قرار داشته باشند .تکرای می شود که از هیچ فاصله ای نباید به منطقه قوس الکتریکی نگاه کرد مگر آن که چشم ها به ماسک جوشکاری مسلح شده باشند . صورت ، دست ها ، بازوها و سایر نقاط بدن نیز باید به توسط تجهیزات مناسب پوشانده شوند .

دست ها باید به توسط دستکش مناسب محافظت شوند و سایر نقاط بدن نیز باید به توسط لباس های سبک پوشیده شوند چون سوختگی ناشی از جوشکاری چیزی در ردیف آفتاب سوختگی است . هرگاه جوشکاری در محلی انجام شود که در نزدیکی آن کارگران دیگری نیز مشغول کار باشند منطقه جوشکاری حتما بایستی به توسط حفاظ های مناسب محاط شود تا حتی از فاصله دور نیز امکان برق زده در چشم سایر کارگران از بین برود.

هرگاه تصادفا چشم کارگری دچار برق زدگی شد بلافاصله باید وی را به بهداری منتقل و تحت مداوا قرار داد .

جوشکاری با قوس الکتریکی معمولا" با پرتاب جرقه به اطراف همراه است . برخورد این جرقه ها به لباس های قابل اشتعال ، پوست بدن و مواد قابل اشتعال دیگر میتواند تولید خطر کند . در مجموع بهتر است از لباس های سبک استفاده کرد . در صورتی که از لباس های جیب دار استفاده می کنید درزهای آنها را بپوشانید و از قرار دادن اشیاُء قابل اشتعال مانند شانه کائوچوئی ، خودنویس و کبریت در آنها خودداری کنید . پوشیدن کفش ایمنی با کف کلفت نیز توصیه میشود . برای جلوگیری از شوک الکتریکی احتمالی باید در روی زمین خشک جوشکاری کرده و از الکترودگیر [1]عایق استفاده نمود . دستکش های ایمنی نیز باید کاملا" خشک باشند .

بطور کلی در مناطق خیس نباید با دستگاه های جوشکاری کار کرد .

با استفاده از کارهای بخصوص ، اطراف ماسک جوشکاری باید بخوبی تهویه شود . گازهای ناشی از جوشکاری ممکن است حاوی اکسیدهای فلزی سمی باشند .

هیچوقت نباید در محلهائی که تهویه مناسب ندارد جوشکاری نمود . فلزی که تازه جوشکاری شده باشد بسیار داغ بوده و میتواند باعث سوختگی شود . برای رعایت ایمنی توصیه میشود که از دستکش های چرمی یا پنبه نسوز که دقیقا اندازه دست باشند استفاده نمود . دستکش باید طوری انتخاب شود که سرآستین لباس کار کارگر را بپوشاند . بسیاری از جوشکارها از لباس چرمی و سنگین استفاده می کنند که لباس های آنها را از خطر جرقه ها در امان نگه میدارد.

فلز داغ را باید به توسط انبردستی یا انبر قفلی برداشت .در کارگاه های جوشکاری قبل از آنکه کارگر قطعه جوشکاری شده را با دست لخت حمل و نقل کند ، حتما باید آن را از مخزن خنک کن عبور داد .

سوار کردن و بازدید کردن وسایل جوشکاری با قوس الکتریکی :

وسائل معمولی جوشکاری با قوس الکتریکی ( برق مستقیم ) به شرح زیر هستند :

.A تامین انرژی الکتریکی

1- دستگاه ژنراتور جوشکاری

2- دستگاه یکسو کننده (رکتیفایر)

.B کابل زمین و کابل الکترود که از سیم های تاییده شده قابل انعطاف با روپوش مطمئن ساخته میشوند .

.C الکترودگیر یا انبر

.D میز کار فولادی با ارتفاع تقریبی 30 اینچ

.E چهار پایه فلزی

.F گیره مناسب

.G الکترودها

.H یک قلاب عایق برای نگهداری الکترودگیر

.I یک کابین یا اتاقک مناسب

اتاقک جوشکاری باید دارای نور و تهویه مناسبی باشد . تمام کابل ها باید در جای مناسب و امنی قرار داشته باشند . دستگاه جوشکاری باید در نزدیکی اطاقک قرار داشته باشد تا علاوه بر کوتاه بودن کابل ها ، تنظیم دستگاه نیز آسان باشد .

قبل از شروع کار باید قسمت های لازم را بازدید کرد تا از آماده بکار بودن دستگاه اطمینان حاصل نمود . همیشه قبل از شروع جوشکاری موارد و نکات زیر را بازدید کرده و مرور نمائید :

الف – جوشکار :

1- دستکش ها باید در شرایط خوبی باشند .

2- ماسک با طلق های مناسب .

3- پیش بند و سایر لباس های محافظ باید سالم باشند .

4- پاچه شلوار نباید زیاد گشاد باشد .

5- جیب ها باید خالی باشند .

6- آستین لباس باید مناسب باشد .

7- لباس ها باید خشک بوده و هیچگونه آثار روغن بر روی آنها نباشد .

8- از آویزان کردن وسائل زینتی باید جدا خودداری کرد .

ب- کارگاه :

1- اتصال کابل های الکترود و زمین باید مطمئن و محکم باشند.

2- پرده های اتاقک باید در وضعیت مناسبی قرار داشته باشند .

3- در سر راه کلید اصلی دستگاه باید فیوزهای سالم و با قدرت مناسب قرار داده شود.

4- آمپر دستگاه بر روی حداقل ممکن گذارده شود .

5- دستگاه تهویه باید در وضعیت مناسب قرار داشته باشد .

ج_ تامین احتیاجات :

1- الکترود با قطر مناسب .

2- سایر وسائل جوشکاری باید تمیز و آماده باشند .

دستگاه باید بر طبق دستورات کارخانه سازنده بازدید شود و در مواقع لازم تمیز و روغنکاری گردد . معمولا یاتاقان های موتور در دستگاه را با روغن موتور متوسط اتومبیل روغنکاری می کنند . بلبرینگ ها معمولا به گریس مخصوصی نیاز دارند . اغلب ، تعمیرکارها ، بازدید و کارهای لازم جهت روغنکاری و گریس کاری دستگاه را انجام میدهند .

بنابراین روغنکاری و گریس کاری دستگاه به عهده کارگر جوشکار نمی باشد . قبل از شروع کار بهتر است کابل های زمین و الکترود را بازدید کرد . الکترودگیر باید دور از قطعه کار و بر روی یک آویز یا قلاب فیبری یا چوبی قرار داده شود . اگر ماشین مورد استفاده از نوع موتور ژنراتور است ، بعد از روشن شدن آن ، وضعیت کموتاتور دستگاه را بازدید نمائید . اگر جاروبک های زغالی دستگه در حین دوران موتور جرقه بزنند ، تا رفع عیب کامل نباید با آن کار کرد . تمام دستگاه های جوشکاری باید در اتاقک مخصوص یا در پشت پرده های مناسب قرار داده شوند تا از ایجاد برق زدگی در چشم سایر کارگران ممانعت بعمل آید .

تنظیم و راه اندازی دستگاههای جوشکاری :

پس از آنکه جوشکار به وسائل ایمنی مجهز شد و پس از آنکه کارگاه جوشکاری را بازدید نمود ، میتواند دستگاه را روشن کند . مراحل روشن کردن دستگاه به شرح زیر است .

1- مطمئن شوید که الکترودگیر بر روی یک قلاب عایق آویزان شده باشد . وقتی الکترودگیر بر روی قطعه کار یا میز کار قرار دارد باید از روشن کردن دستگاه جدا خودداری کرد چون در این حالت مدار الکتریکی دستگاه بسته شده و در شروع عمل ، روشن شدن موتور با بار مصرفی کامل بسیار دشوار است .

2- کلید تامین انرژی اصلی را روشن نمائید .

3- با توجه به جنس فلز قطعه کار و قطر الکترود، امپراژ مناسب را انتخاب و تنطیم نمائید .

4- کلید معناطیسی دستگاه را فشار داده و روشن نمائید . در بعضی از دستگاه ها امکان تنظیم ولتاژ و آمپراژ وجود دارد و در برخی فقط یکی از آنها قابل تنظیم است .

بعد از آنکه جوشکار کمی کارکرد باید آمپر دستگاه را مجددا تنظیم نمود تا نتیجه جوشکاری خوب باشد .


انتخاب الکترود :

مهمترین تصمیمی که جوشکار اتخاذ میکند ، انتخاب الکترود مناسب است، الکترودها را میتوان در موارد زیر از هم تفکیک نمود :

1.نازک یا ضخیم بودن روپوش الکترود

2.ترکیبات شیمیائی روپوش ها مختلف بوده و بسته به نوع فلز و آلیاژ های آن و همچنین برای حالات مختلف جوشکاری متغیر است .

3. روپوش الکترود را میتوان برای انواع روش های DCSP,DCRP و یا AC انتخاب نمود .

4. ترکیبات فلز الکترود.

5.قطر الکترود مطلوب .

معمولا الکترودهای با پوشش ضخیم گرا الکترودهای مشابه با پوشش نازک میباشند ولی در عوض کیفیت جوش آنها نیز بسیار مرغوب تر است .

الکترودها را بوسیله رنگ و اعداد مانند یا مشخص می کنند .

هر الکترود خصوصیات مخصوصی دارد که فقط برای یک کار معین مناسب است . برای کسب اطلاعات بیشتر در مورد انتخاب اعداد مشخصه الکترودها به فصل دوم رجوع کنید .برای تامین موارد استفاده مختلف ، آلیاژ و قطر الکترودهای مختلف فرق می کند .

وقتی می خواهید در روی یک قطعه کار کلفت یک جوش چند مرحله ای را انجام دهید بهتر است قطر الکترود را کمی کوچکتر از اعداد پیشنهادی جدول انتخاب نمائید .

جوشکار بایستی خشک بودن ، تمیزی و ترک نداشتن هر الکترود را بازدید نماید چون این عوامل در کیفیت جوش موثر هستند .

برای قرار دادن الکترود در الکترودگیر کافی است گیره آن را بازکرده و قسمت انتهائی و لخت الکترود را بین فک های گیره قرار داد . هرگاه پس از آزاد کردن دسته های گیه ، اکترود شل باشد و در محل خودسازی کند ، گیره احتیاج به تعمیر یا تنظیم دارد .

روشن کردن قوس الکتریکی :

یکی از اساسی ترین اصولی که افراد مبتدی باید یاد بگیرند روشن کردن قوس الکتریکی بن قطعه کار و الکترود است . ابتدا باید الکترود با قطعه کار تماس پیدا کند و بلافاصله آن را طوری عقب بکشیم که قوس الکتریکی مناسب و دلخواه ایجاد گردد.

اوایل ممکن است الکترود بخوبی عقب کشیده نشود و در نتیجه به سطح کار بچسبد و یا آنقدر دور از سطح کار نگهداشته شود که ولتاژ موجود نتواند فاصله بین سطح کار و نوک الکترود را به پیماید و در نتیجه خاموش شود . فقط تجربه کارگر است که میتواند بر این مشکلات غلبه نماید . در شروع کار طول قوس باید زیاد انتخاب شود تا الکترود جوشکاری بخوبی ذوب شده و محل دلخواه را پر نماید . برای این کار میتوان در شروع عمل نوک الکترود را به سطح کار نزدیک کرده و عقب کشید تا الکترود گرم شود.

بطور کلی برای روشن کردن قوس الکتریکی دو طریقه وجود دارد. در یک روش نوک الکترود ضمن پیمودن یک قوس ، بالا و پائین رفته و در طریقه دیگر نوک الکترود ضمن انجام یک حرکت عمودی بالا و پائین می رود


بررسی جوشکاری با اکسی استیلن

جوشکاری یکی از فرآیندهای فلزکاری است که بوسیله آن فلزات را بهم جوش می دهند فلزات را تا نقطه ذوب حرارت می دهند تا قسمتهای ذوب شده بهم متصل شوند
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 37 کیلو بایت
تعداد صفحات فایل 57
بررسی جوشکاری با اکسی استیلن

فروشنده فایل

کد کاربری 8044

جوشکاری با اکسی استیلن

تعریف جوشکاری

جوشکاری یکی از فرآیندهای فلزکاری است که بوسیله آن فلزات را بهم جوش می دهند. فلزات را تا نقطه ذوب حرارت می دهند تا قسمتهای ذوب شده بهم متصل شوند.

لحیم کاری

دو روش دیگر جوش فلزات که اغلب با جوشکاری اشتباه میشود یکی لحیم معمولی و دیگری لحیم سخت است. لحیم وقتی است که دو فلز را بدون اینکه ذوب کنیم بوسیله فلز دیگری که نقطه ذوب آن پایین تر از 800 درجه فارنهایت است، بهم جوش دهیم. یک مثال ساده آن جوش آهن به مس با استفاده از لحیم قلع و سرب است.

در نوع دیگر لحیم، دو فلز را بدون آنکه ذوب شوند، بوسیله فلز دیگری که نقطه ذوب آن بالاتر از 800 درجه فارنهایت است، بهم جوش می دهند. یک نمونه آن لحیم کردن دو قطعه فولادی به توسط لحیمی از جنس آلیاژ نقره است.

جوشکاری با دست ، نوعی هنر است. پس از مطالعه زیاد در روشها و تمرینهای دقیق و صحیح می توان مهارت لازم را برای جوشکاری و لحیم کاری فلزات پیدا کرد. پس اگر جوشکاری را هنر بدانیم باین مفهوم است که بعضی افراد بعلت استعداد ذاتی بهتر از دیگران میتوانند جوشکار خوبی باشند، در صورتیکه هر شخص عادی با تعلیم خوب و تمرین صحیح می تواند جوشکار قابلی بشود. بنابراین تمرین و کار مداوم لازم است تا جوشکار مهارت لازم در سطح بالا را بدست آورد.

پس توصیه می کنیم در تعلیم جوشکاری فقط از وسائل مخصوص استفاده شود و در تمرین ، فلزات خاصی بکار رود و از روش اساسی و کاملی استفاده شود و در ضمن جلسات اولیه تمرین،‌استاد کاملا مواظب کار کارآموز باشد تا خطاهای اولیه بزودی تصحیح شوند.

روشهای مختلف جوشکاری و برشکاری

معمول ترین انواع جوشکاری :‌ جوشکاری با گاز ، جوشکاری با برق، جوشکاری با برق و گاز و جوشکاری مقاومتی است. اقسام دیگر آن جوشکاری با هیدروژن اتمی ، جوشکاری با ترمیت، جوشکاری سرد، جوشکاری با ماوراء صوت، جوشکاری با اشعه الکترون ، جوشکاری با لیزر و جوشکاری با پلاسما است.

دو نوع معمول برش، برش با گاز و برش با برق است. جوشکاری با برق را در فصول اول توضیح داده ایم و اینک جوشکاری با استیلن را شرح می دهیم زیرا:

1- اصول جوشکاری با استیلن که شامل اصول مهم انواع دیگر جوشکاری نیز هست.

2- جوشکاری با استیلن معمولترین جوشکاری دستی است،‌آهسته تر انجام می شود و تنظیم آن ساده از اقسام دیگر است.

جوشکاری با گاز

یکی از معمولترین اقسام جوشکاری استفاده از گاز برای تولید حرارت است. در اینجا از احتراق گاز در مجاورت اکسیژن هوا استفاده میشود. در مورد استفاده از اکسیژن حرارت باندازه سوراخ سرمشعل بستگی خواهد داشت.

در صنعت چند نوع جوشکاری و برشکاری با گاز معمول است:

1- استیلن – اکسیژن 2- هیدروژن – اکسیژن 3- گاز طبیعی یا صنعتی – اکسیژن 4- گاز مایع - اکسیژن

شعله اکسی استیلن

شعله ممکن است دارای اکسیژن زیاد یا کم باشد که خوب نیست و در آن صورت نسبتهای مخلوط دو گاز اکسیژن و استیلن مناسب است. اگر اکسیژن خیلی زیاد باشد، شعله اکسیدکننده و اگر استیلن زیاد مصرف شود، شعله احیاء کننده خواهد شد. شعله‌های مختلف را نشان می دهد.

شعله‌ی صحیحی را که به فلز حرارت می دهد و آنرا اکسیده یا احیاء نکند شعله خنثی می نامند. شعله خنثی وقتی حاصل می شود که نسبت گاز استیلن و اکسیژن متناسب باشد. در شعله خنثی دو گاز با هم ترکیب شده، اکسیژن با کربن و هیدروژن گاز استیلن ممزوج و حرارت لازم تولید میشود. لازم به یادآوری است که گازهای حاصل بی ضرر هستند.

میتوان به زبان شیمی چنین نوشت: استیلن + اکسیژن = گاز کربنیک + آب + حرارت

دو گاز تولید شده یعنی گاز کربنیک و بخار آب سمی نیستند.

اکسیژن موجود در هوای اطراف شعله برای تکمیل احتراق مصرف میشود و این بدان معنی است که وقتی در شکاف یا گوشه ها بخواهیم جوشکاری کنیم، بطوریکه هوا نتواند به شعله برسد، اکسیژن بیشتری از کپسول را باید بشعله برسانیم. اگر نسبت مخلوط دو گاز مناسب نباشد فرم ظاهری شعله این اشکال را روشن خواهد کرد. آخر سر نیز، شعله خنثی را از وضع فلز ذوب شده میتوان امتحان کرد.

مواد زائد از دو راه وارد شعله جوشکاری میشوند:

الف – ممکن است گازها مواد اضافی داشته باشند.

ب – دستگاه تمیز نباشد.

گاز باید همیشه از کیفیتی خوبی برخوردار باشد. خلوص گاز را کارخانه سازنده مشخص کرده و باید در نظر داشت که گرمای شعله استیلن – اکسیژن خنثی به 5600 درجه فارنهایت می رسد. اگر اکسیژن زیادتر باشد درجه حرارت به کمی بالاتر هم ممکن است برسد. چنانکه در این جدول ملاحظه می کنیم درجه حرارت شعله استیلن اکسیژن برای ذوب فلزات معمولی کافی است.

دستگاه جوشکاری اکسی استیلن

قبل از بحث در طرز کار جوشکاری، بهتر است اطلاعاتی درباره دستگاههای جوشکاری پیدا کنیم تا امکانات و حدود این کار دستگاهها مشخص شود.

در اصل، دستگاه جوشکاری اکسی استیلن شامل وسایل زیراست:

یکی منبع تأمین دو گاز اکسیژن و استیلن و دستگاهی که در آن ، دو گاز بدون خطر با هم مخلوط شده و به مشعل می رسند. در آنجا گازهای مزبور مشتعل شده و درجه حرارت زیادی ایجاد میشود. در اینجا دستگاهی را که بیشتر بکار می رود توضیح می‌دهیم:

الف – کپسولهای گاز: یکی کپسول اکسیژن و دیگری کپسول استیلن

ب – تنظیم های فشار و فشار سنج ها: تنظیم فشار اکسیژن و تنظیم فشار استیلن

ج – لوله اکسیژن و لوله استیلن

د – مشعل جوشکاری

معمولا دو نوع مشعل جوشکاری استیلن و اکسیژن به کار می رود:

1- مشعل از نوع فشار مساوی 2- مشعل از نوع تزریقی در نوع اول همانطور که از اسم آن پیداست گازهای اکسیژن و استیلن هر دو فشاری مساوی یا تقریبا نزدیک به هم دارند. این نوع مشعل ها خیلی بیشتر بکار می روند. در مشعل نوع تزریقی، فشار گاز استیلن نسبتاً کم و فشار اکسیژن خیلی بالاتر است.

سوار کردن دستگاه جوشکاری اکسی استیلن

در صورت استفاده صحیح از دستگاه جوشکاری، خطر عمده ای پیش نمی آید و نتیجه جوشکاری خوب و عمر دستگاه تا اندازه ای زیاد میشود.

کپسول های اکسیژن و استیلن معمولا در تملک شرکتهای فروشنده گاز است. تا مدت معینی از کپسولها اجازه نمی گیرند ولی پس از آن اجازه جزئی دریافت می کنند. بقیه قسمتهای دستگاه متعلق به جوشکار است.

چون فشار گاز اکسیژن در کپسول زیاد است و قابلیت اشتعال استیلن زیاد می‌باشد، ‌لازم است در جابجا کردن کپسولها دقت زیاد معمول شود.

در موقع جوشکاری همیشه عینک مناسب بچشم بزنید. در فصل بعد، خصوصیات عینک جوشکاری توضیح داده شده است.

نحوه عملیاتی که در شروع و خاتمه کار با دستگاه باید اعمال شود،‌تقریباً یکسان است. رعایت دستورهای حفاظتی همیشه باید مورد توجه قرار گیرد.

قبل از استفاده از دستگاه باید مطمئن شویم که دستگاه بطور صحیح نصب شده زیرا این مطلب خیلی مهم است. ببینید کپسولهای گاز در شرایط مناسب قرار دارند؟ این کپسولها باید بطور محکم در محلی ثابت باشند بطوریکه امکان افتادن و برگشتن آنها وجود نداشته باشد.

اگر دستگاه قابل انتقال است بایستی کپسولها را با نوار فولادی یا زنجیر بطور محکم بوسیله نقلیه متصل کنید و وسیله نقلیه طوری باشد که امکان وارونه شدن کپسولها به هیچ وجه موجود نباشد.

در محل های ثابت کپسولها را به دیوار محکم ببندید یا در کف محل کار ،‌ستونهائی نصب کرده کپسولها را بوسیله تسمه یا زنجیرهای فولادی بآنها متصل کنید.

محکم کردن کپسولها باید طوری باشد که تعویض آنها بطور سریع صورت گیرد.

قبل از اینکه دستگاه تنظیم فشار را روی مخزن وصل کنیم،‌با کمی باز کردن شیر کپسول، سرپوش روی کپسول بیرون می برد. باید بگذاریم کمی گاز با فشار زیاد خارج شود تا ذرات زائد را بیرون براند. سطوح مهر و موم و زانو و پیچها را بررسی کنید. از اجزا و قسمتهای خراب استفاده نکنید. سپس فشارسنج ها را روی کپسول ببندید. فقط از آچارهائی استفاده کنید که انتهای آنها ثابت و دارای گیره های وسیع بوده و برای این منظور ساخته شده اند. مطمئن شوید که مهره تنظیم فشار درست با شیر کپسول متناسب است. شیر کپسول سوخت،‌معمولا پیچ های چپ گرد دارد، در صورتیکه شیر کپسول اکسیژن دارای پیچ های راست گرد است. قطر پیچ شیر دوکپسول با هم اختلاف دارند. بدین دلیل که نتوانیم تنظیم فشار را عوضی ببندیم و به این ترتیب گازها مخلوط نگردیده و احتیاط حفاظتی رعایت شود.

معمولا انواع مختلفی از وسائل تنظیم فشار و کپسول بکار میرود.

لوله هائی که از تنظیم فشار به مشعل وصل شده اند باید محکم به آنها مربوط شده باشند. اتصال آنها باید طوری صورت گیرد که وقتی مشعل را در محل جوشکاری بدست می گیریم در محل جوشکاری نباید وضع طوری باشد که بدست ما فشار وارد شود یا لازم باشد مشعل را بچرخانیم تا در جای خود قرار گیرد. قبل از اینکه لوله را به مشعل وصل کنیم و در حالتیکه تنظیم فشار وصل شده باشد، شیرهای کپسول ها را باز می کنیم. شیرهای تنظیم فشار گاز استیلن و بعدا تنظیم فشار گاز استیلن را باز و بسته کرده تا گاز از لوله خارج شود. با این عمل لوله ها تمیز میشوند،‌در جائیکه از لوله فلزی استفاده میشود، در بستن پیچها از خمیر مخصوص (منجمله مخلوط گلیسیرین و سرنج) استفاده کنید.

پس از پاک کردن لوله ها ، مشعل را به آن وصل می کنیم. در نظر داشته باشید، در مورد دستگاه جوشکاری اکسی استیلن ، مهره های لوله استیلن پیچ چپ گرد و مهره های لوله اکسیژن پیچ راست گرد دارند. فقط از آچار با دهانه باز و مناسب استفاده کنید. پس از سوار شدن دستگاه جوشکاری، امتحان کنید که از نقطه ای گاز خارج نشود.

امتحان نشت گاز یکی از کارهای اساسی است. هر دستگاهی را که بخواهیم مجددا سوار کنیم بایستی از این لحاظ امتحان کنیم. همینطور اگر قسمتی از دستگاه را بخواهیم تعویض کنیم باید این عمل را انجام دهیم.

امتحان نشت گاز بدین ترتیب توصیه میشود که مقداری آب صابون در نقطه مورد نظر می مالیم از روغن و شعله به هیچ وجه نباید استفاده کنیم. پیچ تنظیم را کاملا گشوده ، شیر کپسول را باز کنید، فشار سنج تنظیم باید 5 تا 15 پاوند نشان دهد. این عمل را با باز کردن پیچ تنظیم (که در جهت گردش عقربه ساعت می چرخانید) انجام دهید. بعد آب صابون به محل اتصال بمالید. اگر گاز نشت شود در آنجا حباب تولید خواهد شد.

در صورتیکه برای اولین بار از دستگاه جوشکاری استفاده می کنید، به ترتیب زیر عمل کنید:

1- باید یاد بگیرید چگونه محل کار را آماده کنید.

2- روش مخصوص روشن کردن مشعل را یاد بگیرید.

3- تنظیم خروج گاز برای شعله مناسب را یاد بگیرید.

4- یاد بگیرید چگونه دستگاه را خاموش کنید.

جوشکاری فلز مورد نظر و ضخامت آن، شکل و وضع محل آن، اندازه و سرمشعل و طرز کار آن متفاوت است.

جابجا کردن کپسول گاز استیلن و اکسیژن

اگر کپسولهای گاز را بطور صحیح جابجا کنیم خطری پیش نمی آید. در غیر اینصورت ممکن است فوق العاده خطرناک باشد. کپسول ها را نباید پائین انداخت. سرپوش کپسول و شیر محافظ آنرا وقتی کپسول در انبار است یا آنرا میخواهیم جابجا بکنیم باید روی کپسول قرار دهیم.

کپسول مورد استفاده باید طوری محکم در وضع قائم قرار گیرد که وارونه نشود. کپسول وقتی در انبار است، در محل خیلی گرم نباشد. به توصیه های اداره آتش نشانی و شهرداری محل اقامت توجه و آنها را رعایت کنید.

اندازه قطر سیم جوش و نوک مشعل را نسبت به ضخامت فلز مورد نظر نشان می دهد. این اندازه ها تقریبی و نتایج آنها عالی است. ضخامت فلزی که می خواهیم جوشکاری کنیم حائز اهمیت است. در جوشکاری قطعات کوچک از سیم جوش و مشعل با نوک کوچکتر استفاده کنید. اگر قطعات بزرگتر باشند از سیم جوش و مشعل با نوک بزرگتر استفاده شود.

انتخاب اندازه سوراخ سرمشعل

اندازه سوراخ سر مشعل جوشکاری با عددی که روی سرمشعل نوشته شده مشخص میشود. عدد سر مشعل بستگی به قطر سوراخ دارد. شماره گذاری سرمشعل جوشکاری طبق ضابطه خاصی نیست. برای شماره گذاری ، هر کارخانه ضابطة مخصوصی دارد با این مناسبت در اینجا دستورات مربوط به شماره سرمشعل به حسب شماره مته سوراخ داده شده است. شماره مته شامل هشتاد اندازه متوالی از یک تا 80 است. قطر مته شماره یک ، 2280/0 اینچ و قطر مته شماره 80 برابر 0135/0 اینچ است. ملاحظه می کنید هر چه شماره بیشتر باشد، قطر کمتر است. در صفحه بعد، جدول اندازه شماره مته داده شده است.

وقتی جوشکار با مشعل های یک کارخانه خاص و شماره گذاری آن کارخانه ناآشنا باشد، لزومی ندارد که باندازه شماره مته سوراخ سر مشعل مراجعه کند.

چون حجم گاز استیلن و اکسیژن که از سوراخ خارج می شود متناسب قطر سوراخ است، پس مقدار حرارت ایجاد شده به قطر سوراخ بستگی دارد. هر چه سوراخ بزرگتر باشد حرارت بیشتری تولید خواهد شد.

اگر مشعل از نوع فشار متعادل باشد، اگر سوراخ خیلی کوچک باشد، حرارت کافی برای ذوب فلز تأمین نمی شود. اگر سوراخ بزرگ باشد جوش ضعیف است. زیرا جوش ، خیلی سریع انجام میشود، ذوب سیم جوشکاری قابل کنترل نبوده ، ظاهر و کیفیت جوش نیز رضایت بخش نیست.

روشن کردن مشعل از نوع فشار مساوی

برای روشن کردن مشعل، شیر گازها را باز کنید و فشار را تنظیم کنید، فشار متناسب با اندازه سر مشعل است و باین ترتیب عمل کنید:

1- مطمئن شوید تمام قسمتهای دستگاه دارای شرایطی عالی هستند.

2- تنظیم ها را بررسی کنید. پیچ های تنظیم را کاملا بچرخانید (برخلاف حرکت عقربه ساعت) تا وقتی شیر کپسول باز میشود. صفحه دستگاه تنظیم صدمه نبیند.

3- خیلی به آهستگی شیر کپسول اکسیژن را باز کنید (بر خلاف حرکت عقربه ساعت) تا پرده دستگاه تنظیم بر اثر فشار ناگهانی 2000 پوند بر اینچ مربع خراب نشود. وقتی فشار سنج تنظیم فشار به حداکثر رسید، شیر کپسول را تماما باز کنید.

این شیر دارای دو تکیه گاه است. وقتی شیر را کاملا باز کنیم این تکیه گاهها امکان نفوذ اکسیژن با فشار زیاد از اطراف ساقه شیر را از بین می برند. (جوشکار در موقع باز کردن شیر کپسول نباید در مقابل فشار سنج قرار گیرد زیرا ممکن است فشار سنج منفجر شود)

4- شیر کپسول استیلن را بآهستگی باز کنید (برخلاف حرکت عقربه ساعت) از آچار مناسب استفاده کنید ، فقط 4/1 تا 2/1 دور باز کنید . همیشه آچار را روی ساقه شیر کپسول باقی بگذارید تا در موقع لزوم آن را فورا ببندید.

5- شیر اکسیژن روی مشعل را یک دور باز کنید. بعد پیچ میزان تنظیم اکسیژن (موافق جهت حرکت عقربه ساعت ) را باز کنید تا فشار سنج اکسیژن فشاری متناسب با سوراخ سر مشعل را نشان دهد.

فشار در موقع کار کمتر از فشاری است که شیر مشعل بسته میباشد . شیر اکسیژن روی مشعل را ببندید. فقط از نیروی نوک انگشت برای بستن شیر مشعل استفاده کنید. اگر فشار بیشتری وارد کنید ممکن است شیرهای سوزنی را خراب کند، با این روش فشار اکسیژن مشعل تنظیم میشود.

6- شیر استیلن مشعل را یک دور باز کرده و پیچ میزان تنظیم استیلن را بآهستگی (موافق جهت حرکت عقربه ساعت) باز کنید تا فشار سنج فشار کم استیلن ،‌فشار متناسب با شماره سر مشعل نشان دهد.

بعد شیر مشعل استیلن را فقط با نیروی سر انگشت باز کنید. به این ترتیب رگولاتور در حال حاضر میزان شده و تقریباً فشار تعیین شده را پیدا کرده است.

7- شیر استیلن را بیش از دور نچرخانید، با استفاده از فندک سنگ دار،‌گاز استیلن را که از نوک سر مشعل خارج میشود، شعله ور سازید.

8- شیر استیلن مشعل را بآهستگی بچرخانید تا شعله استیلن از انتهای سر مشعل کمی دورتر برود. باین ترتیب مقدار استیلن لازم که باید به سر مشعل وارد کرد، معلوم میشود. باید بتوانید شعله را باندازه اینچ دور کرده و دوباره آنرا بسر مشعل برگردانید و این عمل را با تلنگر انجام دهید. اگر شعله به نوک سر مشعل برنگردد، مقدار استیلن زیاد است، اگر نوک سر مشعل خراب باشد مشکل بتوان شعله را از آن دور کرد. با حرکت مشعل بایستی استیلن را وادار کنید که از نوک سر مشعل خارج شود.

روش دیگر تعیین مقدار صحیح استیلن این است که جریان استیلن را زیاد کنید تا شعله اغتشاش پیدا کند و فاصله آن تا 2 سانتیمتر دورتر از نوک مشعل قرار گیرد.

9- پس از اینکه مقدار لازم استیلن را بدست آوردید، بآهستگی شیر اکسیژن روی مشعل را باز کنید. چون اکسیژن وارد شعله می شود، شعله استیلن که نور زیادی داشت برنگ ارغوانی در می آید. داخل مشعل مخروطی کوچکی ایجاد میشود. این مخروط خالی برنگ سبز کم رنگ است. در وحله اول تشکیل، اطراف انتهای شعله نامنظیم و ناصاف است. مخروط داخلی اطراف شعله نامنظم و ناصاف است. مخروط داخلی اطراف شعله صاف شده و مخروط گرد تشکیل می شود. در اینجا دیگر اکسیژن بیشتری وارد نکنید. در غیر اینصورت شعله اکسید کننده میشود (یعنی اکسیژن زیادتر از میزان لازم بوده ، فلز اکسیده میشود و می سوزد) نوک مخروط داخلی گرمترین قسمت شعله است.

در مورد سر مشعل کوچک ، مقدار مناسب گازها را از صدای هیس شعله مشعل هم میتوان فهمید. شعله باید دارای صدای نرم باشد. وقتی شعله بطور صحیح تنظیم شود صدای هیس نمی دهد.

10- اگر اطراف شعله، تا مخروط نامنظیم مانند پر باشد شعله احیاء کننده بوده ، استیلن زیادتر از حد لازم است. ولی اگر مخروط داخلی دارای نوک خیلی تیز و صدای هیس آن زیاد باشد اکسیژن خیلی زیاد است.در این حال شعله اکسید کننده بوده و اگر شعله دارای مخروط داخلی صاف باشد، آن را خنثی نامند.

روش تنظیم صحیح فشار گاز مشعل جوشکاری چنین است:

1- گاز کپسول ها را طبق دستور قبلی باز کنید.

2- شیر استیلن را کم کم باز کنید. وقتی گاز استیلن شروع بجریان می کند مشعل را روشن کنید. پیچ میزان روی تنظیم استیلن را بیشتر باز کنید تا شعله از مشعل بجهد و دور شود تا اغتشاش شعله طبق روش قبلی اصلاح شود.

3- شیر اکسیژن مشعل را یکدور باز کرده پیچ روی تنظیم اکسیژن را بآهستگی باز کنید تا اکسیژن کافی وارد مشعل شود و برای ترکیب با تمام استیلن کافی باشد و شعله خنثی بدست آید (شعله خنثی را طبق روش پیش شناسائی کنید.)

4- میتوانید از این روش بجای روش قبلی استفاده کنید. ولی اگر جوشکار از لوله لاستیکی بلند استفاده کند لوله در نقاط مختلف تغییرجهت داده و خمیده میشود، در نتیجه افت فشار در قسمتهای مختلف لوله تغییر کرده و به این علت فشار در سر مشعل عوض خواهد شد.

با وجود این با روش اول که توضیح دادیم شیرهای مشعل در شرایط عالی قرار گرفته و تنظیم آنها بهم نمیخورد. جوشکار می تواند از هر کدام از دو روش استفاده کند و بعد بتدریج روشی را که بهتر باشد انتخاب نماید.

نتایجی که از هرکدام از این روشها بدست می آورید کاملا رضایت بخش است.


بررسی برشکاری قوسی پلاسما

برشکاری قوسی پلاسما (PAC) برای برش هر نوع فلزی استفاده می شود ، برشکاری قوس پلاسما غالباً برای برشکاری فولاد کربنی ، آلومینیوم و فولادهای ضد زنگ بکار می رود ، این فلزات از پر مصرف ترین و متداول ترین فلزاتی هستند که در کارگاه جوشکاری استفاده می شوند علاوه بر این فرایند جوشکاری استفاده می شوند علاوه بر این فرایند PAC بر روی هر فلز هادی مانند مس برنج
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 11 کیلو بایت
تعداد صفحات فایل 18
بررسی برشکاری قوسی پلاسما

فروشنده فایل

کد کاربری 8044

برشکاری قوسی پلاسما

برشکاری قوسی پلاسما (PAC) برای برش هر نوع فلزی استفاده می شود ، برشکاری قوس پلاسما غالباً برای برشکاری فولاد کربنی ، آلومینیوم و فولادهای ضد زنگ بکار می رود ، این فلزات از پر مصرف ترین و متداول ترین فلزاتی هستند که در کارگاه جوشکاری استفاده می شوند علاوه بر این فرایند جوشکاری استفاده می شوند علاوه بر این فرایند PAC بر روی هر فلز هادی مانند مس برنج ، و برنز ، نیکل و آلیاژهای آن فلز ، زیرکونیم بنحو دقیقی موثر واقع می گردد ، و حتی برشکاری PAC ،برای برش اورانیم نیز بکار می رود .

دلایل استفاده از PAC

فرایند برشکاری PAC برای برش ورقهای روی هم انباشته ، پخ زدن ورق ، برشکاری شکل گیری (الگو بری) و سوراخ کاری استفاده می شود . در حقیقت مشاهده خواهید کرد که برشکاری های PAC نسبت به شعله اکسی سوخت با ورود حرارت کمتری (با توجه به اینکه پلاسما بسیار داغ تر است ) انجام خواهد گرفت ،چون مشعل پلاسما تا اندازه ای سریع تر از شعله اکسی استیلن کار می کند وسوختی یا اکسید شدگی در مسیر برشکاری و داخل فلز بوجود نمی آید ولی عوض ذوب خواهد شد و بعضی مواقع ، فلز داخل شکاف به طور یکنواخت تبخیر می گردد . نتیجتاً مسایل به طور و مشکلات کاری همراه با تغییر شکل و پیچیدگی فلز اصلی وجود دارد . غالباً مشعل های PAC در برشکاری شکلی (الگوبری) و در ماشین های شیار زنی و در آوردن شیارهای چهار گوش با سرعت زیاد بکار می رود . برشکاری قطعات نسبتاً کوچک به علت وجود جریان برق و OCV زیاد کمی پیچیده و قابل بحث می باشد . سطح صدای جریان شدید گاز پلاسما با سرعت زیاد بسیار است و در حین عمل ، بر اثر سوختن و تبخیر ذرات فلزی ، مقدار کمی دوده فلزی تولید می گردد .

صدا و دودهای حاصل از مشعل دستی با اشکال زیاد کنترل می شود ولی کنترل صدا و دودهای حاصل از مشعل اتوماتیکی که بر روی ماشین برشکاری شعله ای مناسب نصب گردیده هیچ مشکلی ندارد .چرا که دودها و حرارت و صدای حاصل از مشعل پلاسما که بر روی ماشین برشکاری بزرگ نصب گردیده با گذاشتن ورق برشکاری بر رویمیز پر از آب به راحتی قابل کنترل هستند چون آب درست به ته ورق تماس پیدا می کند . باعث می شود دودها و سرباره همانطور که از ته شکاف بیرون آید ،/ در همان جا غوطه ور گردد و صدای جریان شدید پلاسما که در نازل (گلکی)مشعل بوجود آمده با آب خفه شود .

در صورت لزوم می توانید از لباسهای مقاوم صنعتی همانند خفه کن های گوش استفاده نمائید .

سرعت های برشکاری

با استفاده از ماشین برشکاری مناسب (ماشینی که برای فرایند پلاسما ،‌سرعت های زیاد بدون اتلاف وقت برش و تلرانس بوجود می آورد) می توان فلزاتی که با استفاده از مشعل اکسی سوخت نیاز به سرعت های 25 IN.MIN تا 20 دارند با سرعت های 150 IN. min تا 100 برش داد . برشکاری تعدادی از فلزات نازک از سرعت های تا حدود 300 in/min استفاده می گردد . برای کارگر برشکاری دستی امکان ادامه برشکری با مشعل برشکاری پلاسما با سرعت موثر وجود نخواهد داشت .

چنانچه ضخامت فلز در حدود 3in و از جنس ورق فولاد کربنی باشد چنین فلزی با فرایند اکسی استیلن سریعتر از فرایند PAC بریده می شود ،به هر حال در برشکاری فلزات با ضخامت زیر 1in PAC تا پنچ برابر سریعتر از فرایند برشکاری اکسی استیلن موثر می باشد . تصیمیم گیری درباره استفاده از PAC برای فولادهای کربنی که می توان با اکسی استیلن برید ، بر اساس سودمندی با کارآئی PAC در مقابل هزینه بالای تجهیزات انجام می گیرد .

بکار گیری سرعت زیاد در مقابل هزینه بالای تجهیزات بگونه ای است که اغلب تجهیزات PAC که بر اساس ماشین های برشکاری شعله ای با سرعت زیاد طراحی گردیده برای مقادیر زیادی از برشکاری شکلی بکار می رود . سرعت و سودمندی تجهیزات به سازنده کمک می کند که در این زمینه سرمایه گذاری زیادی بنماید . در زمان استفاده از PAC می توران تجهیزاتی بر روی ماشین برشکاری هماره با مشعل های اکسی سوخت ، نصب کرد و به سازنده قطعات حجیم اجازه داد که متناسب با برش ورقهای آهنی یا غیرآهنی مواد ضخیم یا نازک از اکسی سوخت به پلاسما یا پلاسما به سوخت استفاده نماید .

مزایای اقتصادی و صرفه جوئی PAC نشان خواهد داد که اغلب برشهای طویل و مداوم بر روی تعداد زیادی از قطعات کار اجرا گردد . این نوع برشکاری حجیم غالباً در محوطه های کشتی سازی ، کارخانجات مخزن سازی ،کارگاههای ساخت پل های فولادی و مرکز تهیه فولاد مشاهده گردیده است .

تجهیزات قوسی پلاسما

در این مورد استفاده از میله لخت لازم و ضروری است و PAC نیازمند برشکاری است که مثل مشعل جوشکاری پلاسما کار کند و علاوه بر این به منبع برق رسانی مناسب و آبرسانی تمیزی نیاز دارد .

مشعل پلاسما

مشعل PAC قبل از انبر الکترودی است که نوک الکترود د رداخل و مرکز سوراخ نازل پلاسمای متمرکز آن قرار می گیرد . الکترود ونازل با آب خنک می شوند و گاز پلاسما از طریق مدخل مشعل به اطراف الکترود تزریق گردیده و از طریق سوراخ مختلف برای هر مدل مشعل قابل استفاده هستند .قطر سوراخ به جریان برشکاری بستگی دارد . هر چه قطر سوراخ بزرگتر باشد ،جریان زیادتری نیازدارد . طرح نازل به کاربرد نوع مشعل PAC و فلز برش بستگی دارد .

برای PAC از هر دو نازل تک دریچه و چند دریچه ای می توان استفاده کرد . نازل های چند دریچه ای ، دریچه هایی برای ورود گاز محافظ کمکی به اطراف سوراخ گاز پلاسمای اصلی دارند .

تمام گاز یونیزه از طریق سوراخ اصلی با همان سرعت جریان گاز پلاسما در هر واحد سطح عبور می کند . سرعت گاز پلاسما باندازه ای زیاد است که بیش از حد معمولی بوده و این دلیلی برای کاربرد بسیار زیاد فرایند پلاسما خواهد بود . نازل های چند دریچه ای نسبت به نازل های تک دریچه ای با حرکت در سرعت های مساوی برش هایی با کیفیت برش همانند فرایند اکسی استیلن با افزایش سرعت حرکت کاهش می یابد .

کنترل کننده های برشکاری پلاسما

پایه و اساس کنترل PAC شامل والوهای سولونوئید میعنی بوده که آب سرد کننده و گازهای حفاظتی را به جریان می اندازد یا متوقف می کند . دستگاه برشکاری قوسی پلاسما برای مصرف انواع گازهای مختلف محافظتی و برشکاری ، فلومترهائی دارد و چنانچه جریان آب سرد کننده از حد ایمنی افت پیدا کرد ، سوئیچ جریان آب برای توقف عملیات وارد عمل می گردد . کنترل کننده های PAC اتوماتیک با توان بالا همچنین شامل ویژگیهای برنامه ریزی خواهد بود که برای تنظیم نوسانات بالا و پایین جریان برق بر اساس جریان گاز داخل سوراخ نازل بکار می رود .

منابع قدرت برشکاری پلاسما

منابع برق برای PAC از دستگاههای ویژه با OCV در حد 1400V تا 120 طراحی گردیده اند . منبع قدرت بر اساس کاربرد مشعل PAC نوع و ضخامت قطعه برش و حد سرع برشکاری انتخاب می گردد .

در برشکاری پلاسما از ماشین های DC با مشخصه Drooping Voltage ولتاژ افت کننده و جریان ثابت استفاده می شود .

فرایند برشکاری پلاسما بر اساس DCSP با قوس انتقالی متمرکز کار می کند . برشکاری قطعات ضخیم به دستگاه OCV در حد 400 V نیاز دارد و برای سوراخ کاری مواد با همان ضخامت بکار می رود . تجهیزات برشکاری پلاسمای دستی با جریان برق کم از OCV کمتر از 120V تا 200 استفاده می کند . تعدادی از منابع برق جهت برشکاری شیار زنی با اتصالات مجهز گردیده اند که از آنها برای تغییر یا تعویض OCV با مدار لازم برای اجرای کارهای ویژه استفاده می گردد .

سازندگان بسیاری از تجهیزات جوشکاری نسبتاً تجهیزات دستی نمی سازند چون که مسایل ایمنی در نگهداری OCV حل گردیده و ایمنی انها به اندازه دو برابر بیش از ایمنی دستگاههای جوشکاری قوسی می باشد .


بررسی جوشکاری و انواع آن

از ابتدای خلقت بشر مساله اتصال و به هم بستن و ضرورت دستیابی به شیوه های آسانتر برای ایجاد اتصالات مطرح بوده است ایجاد اتصال در شکلهای پیشین خود از به هم بستن شاخه های درختان و تکه های چوب و دوختن تکه های پوست حیوانات برای مصارف گوناگون آغاز شد و متناسب با تکامل نیاز های انسان ،هنر اتصال و به هم پیوستن اجسام نیز رو به تکامل نهاد
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 40 کیلو بایت
تعداد صفحات فایل 75
بررسی جوشکاری و انواع آن

فروشنده فایل

کد کاربری 8044

فهرست مطالب

عنوان صفحه

مقدمه 1

تاریخچه 1

تعریف جوشکاری 3

قوس الکتریکی و چگونگی تشکیل آن 6

شدت جریان در جوشکاری 9

اختلاف پتانسیل در جوشکاری 10

قطب الکترود 13

محاسن و معایب جوشکاری با روشهای AC,DC 15

انواع ترانسها 17

تجهیزات جوشکاری با قوس دستی 19

الکترودها 22

روش ساخت الکترود 27

نقش فلاکسها 29

حفاظت و ایمنی 32

آلودگیهای گازی 38

اتصالات در جوشکاری 41

فاصله روت 42

محاسن جوشکاری نسبت به سایر اتصالات مکانیکی 44

جوشکاری با گاز اکسی استیلن 45

اصول آماده سازی قطعات برای جوشکاری 47

تجهیزات جوشکاری اکسی استیلن 51

مشعلهای جوشکاری 52

بک های جوشکاری 54

رگولاتورهای فشار 56

رنگ مشخصه و اتصالات کپسولها 58

ابزارها و وسایل دستی جوشکاری گازی 63

مقدمه

از ابتدای خلقت بشر مساله اتصال و به هم بستن و ضرورت دستیابی به شیوه های آسانتر برای ایجاد اتصالات مطرح بوده است . ایجاد اتصال در شکلهای پیشین خود از به هم بستن شاخه های درختان و تکه های چوب و دوختن تکه های پوست حیوانات برای مصارف گوناگون آغاز شد و متناسب با تکامل نیاز های انسان ،هنر اتصال و به هم پیوستن اجسام نیز رو به تکامل نهاد .

پیدایش فلزات و آلیاژ های فلزی وتلاش مستمر در یافتن راههای اتصال آنها به هم موجب ابداع روشهای مختلف اتصال شد که اتصال پیچ و مهره ای ، اتصالات پرچی و اتصالات جوشکاری شده از آن جمله اند .

در دنیای امروزه ، صنعت جوشکاری از نظر وسعت کار و تنوع بالاترین مرتبه را در علم اتصال و بریدن و جدا سازی قطعات فلزی و سایر مواد صنعتی دار است و طراحان و مهندسان خطوط تولید مصنوعات فلزی با بهرگیری از فرایند های مختلف و متنوع جوشکاری به بالاترین سرعت و کیفیت دست یافته اند . در عین حال ، وزن سبک مصنوعات و صرف هزینه هرچه کمتر ، از دیگر دستاوردهای آنان بوده است .


تاریخچه :

جوشکاری کوره ای یا آهنگری و جوشکاری با شعله ، نخستین روشهای شناخته شده جوشکاری به شمار می روند .

مصریها ، یونانیها و روسها برای جوشکاری و لحیمکاری فلزات قیمتی یا زود ذوب از نوعی مشعل ابتدایی استفاده می کردند که در آنها الکل یا مایع مشابه به عنوان سوخت به کار می رفته است .

از قرن نوزدهم که کار اختراعات و اکتشافات رونق گرفت ، نوآوری و خلاقیت در میدان تکنولوژی جوشکاری نیز ظهور کرد و روشهای مختلف جوشکاری یکی پس از دیگری ابداع گردید .

جوشکاری با قوس الکتریکی و استفاده از خاصیت حرارتی جریان برق در امر اتصالات فلزی ، با وجود اینکه چندین دهه قبل شناخته شده بود ، کاربردی نداشت .

سرانجام مردی روسی به نام( برنادوس) این پدیده را کشف کرد و در سال 1887 توانست جوشکاری با قوس الکتریکی و الکترود زغالی را اختراع کرد . در سال 1891 یک امریکایی به نام (کوفین) توانست به جای الکترود زغالی از الکترود فلزی استفاده کند و این روش به نام خود به ثبت برساند .

در آن زمان ، جوشکاری با الکترود لخت فلزی بسیار دشوار بود زیرا قوس بین الکترود فلزی و قطعه کار بی ثبات بود و کنترل انتقال قطره مذاب از الکترود به قطعه بسختی انجام می گرفت .

کشف الکترود روپوش دار به وسیله یک مخترع سوئدی به نام اسکار کیلیرگ در سال 1905 باعث ثبات قوس و بهبود کیفیت جوش شد .

پژوهشهای مختلف برای افزایش مرغوبیت و کیفیت این روش ادامه یافت و همچنان ادمه دارد . جوشکاری با قوس الکتریکی و الکترود روپوش دار در ردیف جوشکاریهای ذوبی است که امروزه به طور گسترده در صنایع مختلف به کار گرفته می شود . در زمان حاضر ، جوشکاری قوس دستی (SMAW) یکی از متداولترین روشهای جوشکاری است که به طور گسترده در صنایع فلزی ایران کاربرد دارد و به عنوان پدیده ای ارزشمند در امر تولید و تعمیر در کارخانه ها و کارگاههای مختلف صنعتی ایفای نقش می نماید . به دلیل وابستگی این فن به علوم و فنون و گستردگی دامنه علمی آن متخصصان و کارشناسان ورزیده همواره در حال پژوهش هستند و دستاورد های خود را به صورت استانداردهای جوشکاری انتشار می دهند .

در عملیات اجرائی نیز کاردانان با تجربه همکاری دارند و با تلاش و پشتوانه غنی علمی چرخهای عظیم و پیچیده صنعت را به طور اصولی و اقتصادی به حرکت در می آورند .

تعریف جوشکاری

تاکنون تعاریف زیادی برای جوشکاری بیان شده است ، ولی بطور کلی حذف فاصله و ایجاد جاذبه مولکولی یا کریستالی بین قطعات گوناگون را جوشکاری گویند . برای تحقق این امر روششهای زیادی به ذهن می رسد که اکثرا عملی شده است و نتایج کارائی آنها در ارتباط با وسایل و تجهیزات مورد لزوم به لحاظ سادگی و پیچیدگی مورد مطالعه قرار گرفته است .

عملیات جوشکاری که امروزه در صنایع به کار گرفته میشوندعبارتند از :

1- جوشکاری فشاری 2- جوشکاری ذوبی

هر کدام تقسیم بندیهای گوناگون و گسترده ای دارد که تاکنون بیش از 85 روش در جوشکاری و برشکاری ابداع شده است و اجرا می شود بعضی از روشها نیز منسوج شده ، جای خود را به روشهای نوین جوشکاری داده اند .

جوشکاری فشاری

تعریف : جوشکاری فشاری فرآیندی که در آن لبه های مورد اتصال ، تحت فشار ، و با استفاده از حرارت یا بدون آن در هم ادغام می شوند و قطعات به هم اتصال می یابند .

جوشکاری آهنگری یا پتکه ای ، جوشکاری مقاومتی ، جوشکاری اصطکاکی ، جوشکاری مافوق صوت (اولتراسونیک) و جوشکاری سرد از آن جمله اند .

جوشکاری آهنگری

یکی از فرایند های قدیمی جوشکاری است و روش کار چنین است که قطعات مورد جوشکاری را در کوره ای تا مرحله خمیری شدن گرم می کنند . سپس آنها را از کوره خارج و اکسید ها را از سطح مورد اتصال پاک می کنند . آنگاه آنها را رویهم روی سندان قرار می دهند و ضربات پتک دستی یا برقی میکوبند تا دو قطعه در هم ادغام شوند و جوش بخورند .

جوشکاری مقاومتی

جوشکاری مقاومتی یکی از روشهای جوشکاری فشاری است که در شاخه های مختلف صنعت خصوصاً در صنایعی که با ورقها و مفتول فلزی سر و کار دارند کاربرد فراوان دارد . در این روش سطوح اتصال با اعمال حرارت و فشار بهم جوش می خورند .

فلزات به دلیل داشتن مقاومت الکتریکی ، دراثر عبور جریان برق از آنها ، گرم می شوند و به حالت خمیری و حتی به دمای ذوب می رسند . حرارت حاصل در این روش با مجذور شدت جریان و مقاومت در زمان عبور جریان رابطه مستقیم دارد . شدت زمان عبوری و زمان از طریق دستگاه قابل کنترل و تنظیم است ، اما مقاومت الکتریکی به عوامل مختلف از جمله جنس و ضخامت قطعات کار ، اندازه سطح الکترود ها ، چگونگی سطح تماس و فشار اعمال شده به کار مربوط می شود .

جوشکاری مقاومتی در صنعت به صورتهای گوناگون مورد استفاده است که مهمترین و متداولترین آنها به ترتیب زیر است : 1- جوش نقطه ای یا نقطه جوش 2- جوش قرقره ای یا درز جوش 3- جوش واژگون یا سر به سر 4- فلاش جوش یا جوش جرقه ای

جوشکاری ذوبی

تعریف : جوشکاری ذوبی روشی است که در آن لبه های مورد اتصال پس از ذوب شدن به کمک فلز پر کننده یا بدون آن در هم آمیخته و منجمد میگردند به این ترتیب قطعات به یکدیگر متصل می شوند .

برای ذوب کردن لبه های مورد اتصال از انرژیهای مختلف استفاده می شود : انرژی شمیایی : جوشکاری با شعله گاز ، جوشکاری ترمیت

انرژی الکتریکی : جوشکاری با قوس الکتریکی

انرژی نورانی : جوشکاری با اشعه لیزر

در جوشکاری با قوس الکتریکی حرارت لازم برای ذوب لبه های مورد اتصال و مفتول پر کننده درز از طریق ایجاد و برقراری قوس الکتریکی بین الکترود و فلز مورد جوشکاری تامین می شود .

قوس الکتریکی و چگونگی تشکیل آن

چنانچه قطبهای مثبت و منفی یک منبع انرژی الکتریکی را با هم تماس داده و سپس در فاصله کمی از یکدیگر قرار دهند ، در اثر اختلاف پتانسیل الکتریکی موجود میان آنها جرقه های ایجاد می شود . این جرقه ها موجب یونیزه شدن اتمسفر بین دو قطب و عبور الکترونها از فاصله هوایی میان دو قطب می شود .

ادامه جرقه ها و به هم پیوستن آنها در فضایی یونیزه شده ، موجب تشکیل قوس الکتریکی می شود . با وجود یونیزه شدن فضای بین الکترود وکار ، باز هم مقاومت الکتریکی زیادی در این منطقه وجود دارد و همین مقاومت سبب تبدیل انرژی الکتریکی به انرژی حرارتی می شود و حرارت در حدود 6000-5000 درجه سانتیگراد ایجاد می گردد که می تواند در زمان کوتاهی فلزات را به دمای ذوب برساند.

روشهای مختلف ایجاد قوس الکتریکی

یکی از روشهای ایجاد قوس الکتریکی استفاده از اختلاف پتانسیل زیاد یا ولتاژ بالا است . جرقه هایی که در شمع اتومبیل زده می شود تا مخلوط هوا و سوخت در سیلندر اتومبیل محترق شوند ، با استفاده از ولتاژ بالا تحقق می یابد .

در این روش ، بدون اینکه تماس میان دو قطب جریان برقرار شود ، جرقه زده می شود ولی گرمای ایجاد شده به وسیله قوس حاصل ، بسیار کم است .

همچنین در بعضی از انواع جوشکاری مثل جوشکاری با گاز محافظ ، جرقه های اولیه با استفاده ولتاژ بالا ایجاد می شوند ، بدین صورت ، که با نزدیک شدن الکترود به کار قبل از برقراری تماس بین آن دو و حتی از فاصله 20 تا 30 میلیمتری ، در اثرولتاژ ذخیره شده در خازن دستگاه جرقه زده می شود ، گاز محافظ یونیزه می گردد و زمینه ایجاد قوس پایدار برای جوشکاری فراهم می شود . در روش جوشکاری قوسی با الکترود روپوش دار ، قوس الکتریکی با آمپر زیاد ایجاد می گردد و به منظور ایجاد قوس میان دو قطب جریان ، تماس برقرار می شود تا جرقه حاصل گردد ودرصدی از اتمسفر موجود بین دو قطب یونیزه شود سپس قوس پایدار به وجود آید .

عوامل موثر در برقراری و تشکیل قوس الکتریکی و ایجاد حرارت عبارتند از : اختلاف پتانسیل دو سر قطب ، شدت جریان و مقاومت دو قطب .

جریان الکتریسیته مناسب در روش (SMAW)

جریان الکتریکی عبارت است از حرکت الکترونها در یک هادی و برای حرکت الکترون درون هادی فشار الکتریکی لازم است و در صورتی که اختلاف پتانسیل موجود داشته باشد جریان نیز وجود دارد .

چنانچه قطبهای تغییر نکنند و به عبارت دیگر ، جهت جریان همیشه ثابت باشد و الکترونها فقط در یک جهت حرکت کنند ، جریان را جریان مستقیم یا DC نامند . چنانچه جهت جریان ثابت نباشد و به عبارت دیگر ، الکترونها نخست در یک جهت جریان یابند و بعد جهت خود را عوض کرده و عکس جهت قبلی سیر کنند ، آن را جریان متناوب AC نامند.

در جوشکاری با قوس الکتریکی از هر دو نوع جریان استفاده می شود . جریان AC به وسیله ترانس جوشکاری یا مبدل و جریان DC به وسیله دینام جوشکاری یا رکتی فایر تامین می گردد .

شدت جریان در جوشکاری

به تعداد الکترونهایی که از یک نقطه ازمدار در زمان واحد می گذرد شدت جریان عبوری گویند . اگر در یک ثانیه به اندازه یک کولن یا تعداد 10×82/6 الکترون از یک نقطه از مدار بگذرد ، جریان عبوری یک آمپر است که آن را با حرف I نشان می دهند . جریان جوشکاری به وسیله آمپر اندازه گیری می شود . استفاده از ولتاژ بالا در قوس خطر شوک الکتریکی دارد . بنابراین با توجه به روابط زیر در جوشکاری از شدت جریان زیاد و ولتاژ کم استفاده می شود تا حرارت کافی برای ذوب موضعی فراهم شود .

محدوده شدت جریان جوشکاری باقوس الکتریکی : در جوشکاری با الکترود دستی معمولا 350 میلیمتر طول و قطری بین 5/2 تا3/6 میلیمتر دارند . تمام شدت جریان جوشکاری از هسته فلزی الکترود عبور می کند و چون دارای مقاومت الکتریکی است ، در آن گرما ایجاد می شود و اگر خیلی گرم شود ، خطر ذوب زودرس الکترود وجود دارد و زودتر از آن پوشش الکترود لطمه خواهد دید . با توجه به این نکات ، سازندگان الکترودها حداکثر جریان را برای هر نوع الکترود مشخص می کنند .


اختلاف پتانسیل در جوشکاری

عامل عبور الکترونها در یک هادی ، فشار الکتریکی یا اختلاف پتانسیل است به عبارت دیگر فشاری است که موجب راندن الکترونها را از مقاومت الکتریکی عبور می دهد .

واحد فشار الکتریکی ولت است و آن اختلاف پتانسیلی است که موجب شود یک کولن ، کاری معادل یک ژول انجام دهد .

جریان الکتریکی در مدار به جریان آب در سیستم لوله کشی شباهت دارد.

در این سیستم یک تلمبه موجود است که آب از یک سو فشار قرار می دهد و باعث عبور جریان آب از سوپاپ تنظیم می شود .

در مدار الکتریکی ، مولد جریان (باتری-ژنراتور-دینام جوش) همچون پمپ در سیستم لوله کشی یاد شده عمل میکند و فشار الکتریکی به وجود می آورد تا الکترونها حرکت کنند و بتواند از مقاومت بگذرند به عبارت دیگر ، عبور الکترونها از قوس الکتریکی است که از طریق ترانس یا دینام جوشکاری تامین می گردد .

ولتاژ مدار باز و ولتاژ قوس الکتریکی : برای انجام جوشکاری و برقراری جریان الکتریکی در مدار نیروی محرکه یا ولتاژ لازم توسط دستگاه جوشکاری تامین می شود و بسته به نوع دستگاه جریان DC یا ACولتاژی معادل 80-50 ولت خواهیم داشت . همزمان با تشکیل قوس الکتریکی ولتاژ افت می کند و تقریبا به نصف یا کمتر می رسد .

محدوده ولتاژ در جوشکاری با قوس الکتریکی : ماکزیمم ولتاژ قوس 40 ولت است زیرا کار با ولتاژ بیشتر احتمال خطر شوک الکتریکی دارد از سوی دیگر ، برقراری و پایداری قوس الکتریکی با ولتاژهای کم دشوار است .

ولتاژ مدار باز دستگاههای جوشکاری در محدوده 50 تا 80 ولت است ولی در بعضی از دستگاههای جوشکاری پیشرفته ، به منظور افزایش ایمنی پس از قطع عمل جوشکاری ولتاژ دو سرکابل به طور اتوماتیک تنزل می یابد و در حد بسیار پایینی قرار می گیرد تا هنگام تعویض الکترود برای جوشکاری کمترین احتمال شوک الکتریکی وجود نداشته باشد . در این دستگاهها با اولین تماس الکترود به کار و عبور جریان ضعیف از مدار جوشکاری ، کنتاکتور تعبیه شده در دستگاه به طور خودکار ولتاژ اصلی را وارد مدار می کند تا قوس تشکیل شود .

بلافاصله پس از برقراری قوس ، ولتاژ افت می کند و به حدود نصف می رسد که به آن ولتاژ قوس می گویند . در بعضی از دستگاههای جوشکاری ، کلیدی برای تغییرات جزئی در ولتاژ قوس وجود دارد زیرا افزایش نفوذ جوش می شود . افزایش ولتاژ طول قوس را نیز افزایش می دهد و کار کردن با طول قوس بلند موجب کاهش حفاظت منطقه مذاب و ستون قوس از اثرات زیان بخش اتمسفر نیز خواهد شد .


مقاومت الکتریکی قوس

همه اجسام جریان الکتریکی را به یک اندازه هدایت نمی کنند . هادیها اجسامی هستند که جریان را به راحتی از خود عبور می دهند و عایقها برعکس از عبور جریان جلوگیری می کنند .

علت این است که هادیها مقدار زیادی الکترون آزاد دارند . بیشتر فلزات هادیهای خوبی هستند یعنی دارای قابلیت هدایت الکتریکی هستند .

دسته دیگری از اجسام در برابر عبور جریان و حرکت الکترونها مخالفت می کنند و بنابراین دارای مقاومت الکتریکی هستند . واحد مقاومت الکتریکی اهم است .

در یک مدار جوشکاری ، کابلهای انبر و اتصال هادیهای خوبی هستند . انبر جوشکاری نیز براحتی جریان رااز خود عبور می دهد . مغز فلزی الکترود هم مقاومت زیادی ندارد ولی فاصله بین الکترود و کار دارای مقاومت زیادی است هر قدر فاصله الکترود با کار زیادتر شود ، مقاومت این قسمت از مدار افزایش می یابد و با کم شدن الکترود با کار از مقاومت هم کاسته شود .

گرمای زیاد قوس موجب میشود که اتمسفر بین الکترود وکار و همچنین گازهای تولید به وسیله روپوش الکترود ، یونیزه شود و مقاومت الکتریکی قوس کاهش یابد . فاصله بین الکترود و کار مورد جوشکاری را طول قوس گویند . پس می توان گفت طول قوسهای کوتاه مقاومت کمتری دارند و طول قوسها بلند دارای مقاومت بیشتری هستند

مقامت قوس باعث تبدیل انرژی الکتریکی به حرارتی می شود ولی مقاومت سایر قسمتها مدار باید درحد مینیمم باشد . چنانچه محل اتصال کابل جوشکاری به دستگاه و انبر جوشکاری و غیره محکم نباشد یا طول کابل جوشکاری زیاد باشد یا از کابلهای کم قطر استفاده شود ، به علت وجود مقاومت در مدار ، افت ولتاژ پیش می آید که موجب بروز اختلال در کار جوشکاری خواهد شد .

قطب الکترود

در جوشکاری با قوس الکتریکی ، می توان از جریان متناوب AC یا جریان یکنواخت DC با الکترود منفی یا مثبت استفاده کرد . انتخاب نوع جریان به روش جوشکاری ، نوع الکترود و همچنین نوع فلزی که جوشکاری می شود بستگی دارد. در فرایند جوشکاری با قوس الکتریکی ، برق مستقیم و الکترود فلزی می توانیم به دو صورت با قطب مستقیم و معکوس کار کنیم .

اگر الکترود منفی و کار مثبت باشد جوشکاری با قطب مستقیم نامیده می شود .

همان طور که در شکل1 مشخص است ، الکترونها از الکترود به سوی کار پرتاب می شوند و با سرعت زیاد به آن برخورد می کنند به علت بمباران شدن سطح کار به وسیله الکترونها شدت گرما در محل ذوب بیشتر است . در این حالت 3/2 گرما در محل ذوب و 3/1 در الکترود توزیع می شود و به همین علت ، نفوذ جوش بیشتر است .

اگر الکترود مثبت و کار منفی می باشد ، جوشکاری با قطب معکوس نامیده

می شود .

در این حالت فلز مغز الکترود و نیز گازهای محافظ کاملا گرم هستند لذا سرعت انتقال مذاب از الکترود به کار یکنواخت تر و بهتر انجام می شود .

یکی دیگر از ویژگیهای قطب معکوس عمل تمیز کاری است . به دلیل حرکت الکترونها از کار و بر خورد یونهای مثبت از الکترود به قطعه کار ، در محل تشکیل قوس شکستن لایه های اکسید صورت می گیرد از این ویژگی در جوشکاری فلزاتی که لایه اکسیدی دارند ، به نحو مطلوب استفاده می شود .

در جوشکاری با برق متناوب به علت تغییر جهت جریان الکترود ، به تناوب نیم سیکل منفی و نیم سیکل بعد مثبت است . پس می توان گفت 2/1 حرارت در کار و 2/1 حرارت در الکترود توزیع شده و عمل تمیز کاری قوس در نیم سیکلی که الکترود مثبت است ، صورت می گیرد .

محاسن و معایب جوشکاری با روشهای AC,DC

محاسن جوشکاری با جریان متناوب AC

از جریان متناوب در جوشکاری به طور گسترده استفاده می شود و دارای مزایا و معایبی به شرح زیر است :

- هزینه نگهداری و تعمیر ترانسفورماتور جوشکاری کمتر است .

- ترانسفورماتور جوشکاریAC بمراتب از دینامهای جوشکاری و رکتی فایرها DC ارزانتر است .

- وزش قوس وجود ندارد.

- حرارت در کار و الکترود به طور مساوی توزیع می شود .

معایب جریان متناوب AC

- امکان تغییر قطب وجود ندارد .

- بعضی از انواع الکترودها را نمی توان با این جریان جوشکاری کرد .

- جریان متناوب برای جوشکاری بعضی از فلزات مناسب نیست .

محاسن جریان مستقیم DC

- خطر شوک الکتریکی کمتر است .

- قوس راحت تر تشکیل می شود و پایدارتر است .

- قوس آرامتر بوده و پاشش ذرات کم است .

- استفاده از انواع الکترود ها امکان پذیر است .

- جوشکاری با حداقل آمپر امکان پذیر است .

- امکان تغییر قطب وجود دارد .

معایب جوشکاری با جریان مستقیم DC

گاهی در جوشکاری با جریان مستقیم پدیده ای به نام وزش قوس (دمش قوس ) و به عبارت دیگر ، انحراف قوس وجود دارد .

وزش قوس

عبور جریان الکتریکی در الکترود و قطعه کار و کابل اتصال حوزهای مغناطیسی به وجود می آورد که به صورت دایره های متوالی عمود بر مسیر عبور جریان برق است .

هنگامی که این حوزه مغناطیسی نا متعادل باشد ، قوس به طرفی که تمرکز حوزه بیشتر است ، منحرف می شود . این انحراف را وزش قوس گویند . در جوشکاری با جریان مستقیم که حوزه مغناطیس تشکیل شده جهت ثباتی دارد، وزش قوس بیشتر اتفاق می افتد . معمولا انحراف قوس در جهت حرکت پیشروی به طرف جلو یا عقب اتفاق می افتد و هنگام جوشکاری گوشه ها و نزدیک محل اتصال کابل به قطعه کار ، انحراف قوس زیادخواهد بود . در مواقعی که وزش قوس زیاد باشد کنترل مذاب مشکل می شود . و جوش به وجود آمده ناموزن نامتعادل است .


بررسی تاریخچه شرکت نفت

از ابتدای خلقت بشر مساله اتصال و به هم بستن و ضرورت دستیابی به شیوه های آسانتر برای ایجاد اتصالات مطرح بوده است ایجاد اتصال در شکلهای پیشین خود از به هم بستن شاخه های درختان و تکه های چوب و دوختن تکه های پوست حیوانات برای مصارف گوناگون آغاز شد و متناسب با تکامل نیاز های انسان ،هنر اتصال و به هم پیوستن اجسام نیز رو به تکامل نهاد
دسته بندی نفت و پتروشیمی
فرمت فایل doc
حجم فایل 57 کیلو بایت
تعداد صفحات فایل 82
بررسی تاریخچه شرکت نفت

فروشنده فایل

کد کاربری 8044

فهرست

تقــــــــــدیــــــــــر و تشــــــکـــر

.............................................................................1

تاریخــــچـــــه شــــــرکـــت نـــفـــــت

………………………………………………….........2

نمـــــــــــــــودار ســــــــــازمــــانی

…………………………………………………........ 4

مــــــــقــــــــــــدمــــــــــــه

.............................................................................5

تعریف جوشکاری .............................................................................8

قوس الکتریکی و چگونگی تشکیل آن ...........................................………………….......10

محاسن و معایب جوشکاری با روش های AC و DC ...................……………………………………......17

انواع ترانس ............................................................................19

تجهیزات قوس دستی ...........................................................................21

الکترود ها ............................................................................24

نقش فلاکسها (پوشش الکترود) ..........................................................…………. 29

حفاظت و ایمنی ............................................................................32

اتصالات در جوشکاری .................................................................….......39

محاسن جوشکاری به سایر اتصالات ................................................………………......43

جوشکاری با گاز اکسی- استیلن .....................................................…………….....44

تجهیزات جوشکاری اکسی- استیلن .............................................………………........50

نحوه تشکیل شدن شعله (روشن کردن مشعل) ................................………………………….......56

کاربرد شعله های مختلف(آزمایش شعله‌) .........................................….………………….....60

ابزارها و وسایل دستی جوشکاری گازی ......................................…………………….........62

آهـــــــــــــــــنــــــــــــــگری

…..………………………………………………….63

آهـــــــنـــــــــــگری مــیـــلــــــه

………………………………………………………65

پــــــــــــــرس کــــــــــــــــردن

…...………………………………………………….67

مـــــثال هایی از آهـــــنــــگری فولاهای بـــــزرگ

………..……………………………………………..69

آهــــــــــــنــــــــگری لـــــــولــه

…..………………………………………………….71

تــغیــــیر شـــــکل دادن اجـسام با کـمـک غـالـب گرم

………………………………………………………74

دستـــــــگاه و لــــــــــوازم آهــــنـــگری

………………………………………………………76

مقدمه

از ابتدای خلقت بشر مساله اتصال و به هم بستن و ضرورت دستیابی به شیوه های آسانتر برای ایجاد اتصالات مطرح بوده است . ایجاد اتصال در شکلهای پیشین خود از به هم بستن شاخه های درختان و تکه های چوب و دوختن تکه های پوست حیوانات برای مصارف گوناگون آغاز شد و متناسب با تکامل نیاز های انسان ،هنر اتصال و به هم پیوستن اجسام نیز رو به تکامل نهاد .

پیدایش فلزات و آلیاژ های فلزی وتلاش مستمر در یافتن راههای اتصال آنها به هم موجب ابداع روشهای مختلف اتصال شد که اتصال پیچ و مهره ای ، اتصالات پرچی و اتصالات جوشکاری شده از آن جمله اند .

در دنیای امروزه ، صنعت جوشکاری از نظر وسعت کار و تنوع بالاترین مرتبه را در علم اتصال و بریدن و جدا سازی قطعات فلزی و سایر مواد صنعتی دار است و طراحان و مهندسان خطوط تولید مصنوعات فلزی با بهرگیری از فرایند های مختلف و متنوع جوشکاری به بالاترین سرعت و کیفیت دست یافته اند . در عین حال ، وزن سبک مصنوعات و صرف هزینه هرچه کمتر ، از دیگر دستاوردهای آنان بوده است .


تاریخچه :

جوشکاری کوره ای یا آهنگری و جوشکاری با شعله ، نخستین روشهای شناخته شده جوشکاری به شمار می روند .

مصریها ، یونانیها و روسها برای جوشکاری و لحیمکاری فلزات قیمتی یا زود ذوب از نوعی مشعل ابتدایی استفاده می کردند که در آنها الکل یا مایع مشابه به عنوان سوخت به کار می رفته است .

از قرن نوزدهم که کار اختراعات و اکتشافات رونق گرفت ، نوآوری و خلاقیت در میدان تکنولوژی جوشکاری نیز ظهور کرد و روشهای مختلف جوشکاری یکی پس از دیگری ابداع گردید .

جوشکاری با قوس الکتریکی و استفاده از خاصیت حرارتی جریان برق در امر اتصالات فلزی ، با وجود اینکه چندین دهه قبل شناخته شده بود ، کاربردی نداشت .

سرانجام مردی روسی به نام( برنادوس) این پدیده را کشف کرد و در سال 1887 توانست جوشکاری با قوس الکتریکی و الکترود زغالی را اختراع کرد . در سال 1891 یک امریکایی به نام (کوفین) توانست به جای الکترود زغالی از الکترود فلزی استفاده کند و این روش به نام خود به ثبت برساند .

در آن زمان ، جوشکاری با الکترود لخت فلزی بسیار دشوار بود زیرا قوس بین الکترود فلزی و قطعه کار بی ثبات بود و کنترل انتقال قطره مذاب از الکترود به قطعه بسختی انجام می گرفت .

کشف الکترود روپوش دار به وسیله یک مخترع سوئدی به نام اسکار کیلیرگ در سال 1905 باعث ثبات قوس و بهبود کیفیت جوش شد .

پژوهشهای مختلف برای افزایش مرغوبیت و کیفیت این روش ادامه یافت و همچنان ادمه دارد . جوشکاری با قوس الکتریکی و الکترود روپوش دار در ردیف جوشکاریهای ذوبی است که امروزه به طور گسترده در صنایع مختلف به کار گرفته می شود . در زمان حاضر ، جوشکاری قوس دستی (SMAW) یکی از متداولترین روشهای جوشکاری است که به طور گسترده در صنایع فلزی ایران کاربرد دارد و به عنوان پدیده ای ارزشمند در امر تولید و تعمیر در کارخانه ها و کارگاههای مختلف صنعتی ایفای نقش می نماید . به دلیل وابستگی این فن به علوم و فنون و گستردگی دامنه علمی آن متخصصان و کارشناسان ورزیده همواره در حال پژوهش هستند و دستاورد های خود را به صورت استانداردهای جوشکاری انتشار می دهند .

در عملیات اجرائی نیز کاردانان با تجربه همکاری دارند و با تلاش و پشتوانه غنی علمی چرخهای عظیم و پیچیده صنعت را به طور اصولی و اقتصادی به حرکت در می آورند .

تعریف جوشکاری

تاکنون تعاریف زیادی برای جوشکاری بیان شده است ، ولی بطور کلی حذف فاصله و ایجاد جاذبه مولکولی یا کریستالی بین قطعات گوناگون را جوشکاری گویند . برای تحقق این امر روششهای زیادی به ذهن می رسد که اکثرا عملی شده است و نتایج کارائی آنها در ارتباط با وسایل و تجهیزات مورد لزوم به لحاظ سادگی و پیچیدگی مورد مطالعه قرار گرفته است .

عملیات جوشکاری که امروزه در صنایع به کار گرفته میشوندعبارتند از :

1- جوشکاری فشاری 2- جوشکاری ذوبی

هر کدام تقسیم بندیهای گوناگون و گسترده ای دارد که تاکنون بیش از 85 روش در جوشکاری و برشکاری ابداع شده است و اجرا می شود بعضی از روشها نیز منسوج شده ، جای خود را به روشهای نوین جوشکاری داده اند .

جوشکاری فشاری

تعریف : جوشکاری فشاری فرآیندی که در آن لبه های مورد اتصال ، تحت فشار ، و با استفاده از حرارت یا بدون آن در هم ادغام می شوند و قطعات به هم اتصال می یابند .

جوشکاری آهنگری یا پتکه ای ، جوشکاری مقاومتی ، جوشکاری اصطکاکی ، جوشکاری مافوق صوت (اولتراسونیک) و جوشکاری سرد از آن جمله اند .

جوشکاری آهنگری

یکی از فرایند های قدیمی جوشکاری است و روش کار چنین است که قطعات مورد جوشکاری را در کوره ای تا مرحله خمیری شدن گرم می کنند . سپس آنها را از کوره خارج و اکسید ها را از سطح مورد اتصال پاک می کنند . آنگاه آنها را رویهم روی سندان قرار می دهند و ضربات پتک دستی یا برقی میکوبند تا دو قطعه در هم ادغام شوند و جوش بخورند .

جوشکاری مقاومتی

جوشکاری مقاومتی یکی از روشهای جوشکاری فشاری است که در شاخه های مختلف صنعت خصوصاً در صنایعی که با ورقها و مفتول فلزی سر و کار دارند کاربرد فراوان دارد . در این روش سطوح اتصال با اعمال حرارت و فشار بهم جوش می خورند .

فلزات به دلیل داشتن مقاومت الکتریکی ، دراثر عبور جریان برق از آنها ، گرم می شوند و به حالت خمیری و حتی به دمای ذوب می رسند . حرارت حاصل در این روش با مجذور شدت جریان و مقاومت در زمان عبور جریان رابطه مستقیم دارد . شدت زمان عبوری و زمان از طریق دستگاه قابل کنترل و تنظیم است ، اما مقاومت الکتریکی به عوامل مختلف از جمله جنس و ضخامت قطعات کار ، اندازه سطح الکترود ها ، چگونگی سطح تماس و فشار اعمال شده به کار مربوط می شود .

جوشکاری مقاومتی در صنعت به صورتهای گوناگون مورد استفاده است که مهمترین و متداولترین آنها به ترتیب زیر است : 1- جوش نقطه ای یا نقطه جوش 2- جوش قرقره ای یا درز جوش 3- جوش واژگون یا سر به سر 4- فلاش جوش یا جوش جرقه ای

جوشکاری ذوبی

تعریف : جوشکاری ذوبی روشی است که در آن لبه های مورد اتصال پس از ذوب شدن به کمک فلز پر کننده یا بدون آن در هم آمیخته و منجمد میگردند به این ترتیب قطعات به یکدیگر متصل می شوند .

برای ذوب کردن لبه های مورد اتصال از انرژیهای مختلف استفاده می شود : انرژی شمیایی : جوشکاری با شعله گاز ، جوشکاری ترمیت

انرژی الکتریکی : جوشکاری با قوس الکتریکی

انرژی نورانی : جوشکاری با اشعه لیزر

در جوشکاری با قوس الکتریکی حرارت لازم برای ذوب لبه های مورد اتصال و مفتول پر کننده درز از طریق ایجاد و برقراری قوس الکتریکی بین الکترود و فلز مورد جوشکاری تامین می شود .

قوس الکتریکی و چگونگی تشکیل آن

چنانچه قطبهای مثبت و منفی یک منبع انرژی الکتریکی را با هم تماس داده و سپس در فاصله کمی از یکدیگر قرار دهند ، در اثر اختلاف پتانسیل الکتریکی موجود میان آنها جرقه های ایجاد می شود . این جرقه ها موجب یونیزه شدن اتمسفر بین دو قطب و عبور الکترونها از فاصله هوایی میان دو قطب می شود .

ادامه جرقه ها و به هم پیوستن آنها در فضایی یونیزه شده ، موجب تشکیل قوس الکتریکی می شود . با وجود یونیزه شدن فضای بین الکترود وکار ، باز هم مقاومت الکتریکی زیادی در این منطقه وجود دارد و همین مقاومت سبب تبدیل انرژی الکتریکی به انرژی حرارتی می شود و حرارت در حدود 6000-5000 درجه سانتیگراد ایجاد می گردد که می تواند در زمان کوتاهی فلزات را به دمای ذوب برساند .

روشهای مختلف ایجاد قوس الکتریکی

یکی از روشهای ایجاد قوس الکتریکی استفاده از اختلاف پتانسیل زیاد یا ولتاژ بالا است . جرقه هایی که در شمع اتومبیل زده می شود تا مخلوط هوا و سوخت در سیلندر اتومبیل محترق شوند ، با استفاده از ولتاژ بالا تحقق می یابد .

در این روش ، بدون اینکه تماس میان دو قطب جریان برقرار شود ، جرقه زده می شود ولی گرمای ایجاد شده به وسیله قوس حاصل ، بسیار کم است .

همچنین در بعضی از انواع جوشکاری مثل جوشکاری با گاز محافظ ، جرقه های اولیه با استفاده ولتاژ بالا ایجاد می شوند ، بدین صورت ، که با نزدیک شدن الکترود به کار قبل از برقراری تماس بین آن دو و حتی از فاصله 20 تا 30 میلیمتری ، در اثرولتاژ ذخیره شده در خازن دستگاه جرقه زده می شود ، گاز محافظ یونیزه می گردد و زمینه ایجاد قوس پایدار برای جوشکاری فراهم می شود . در روش جوشکاری قوسی با الکترود روپوش دار ، قوس الکتریکی با آمپر زیاد ایجاد می گردد و به منظور ایجاد قوس میان دو قطب جریان ، تماس برقرار می شود تا جرقه حاصل گردد ودرصدی از اتمسفر موجود بین دو قطب یونیزه شود سپس قوس پایدار به وجود آید .

عوامل موثر در برقراری و تشکیل قوس الکتریکی و ایجاد حرارت عبارتند از : اختلاف پتانسیل دو سر قطب ، شدت جریان و مقاومت دو قطب .

جریان الکتریسیته مناسب در روش (SMAW)

جریان الکتریکی عبارت است از حرکت الکترونها در یک هادی و برای حرکت الکترون درون هادی فشار الکتریکی لازم است و در صورتی که اختلاف پتانسیل موجود داشته باشد جریان نیز وجود دارد .

چنانچه قطبهای تغییر نکنند و به عبارت دیگر ، جهت جریان همیشه ثابت باشد و الکترونها فقط در یک جهت حرکت کنند ، جریان را جریان مستقیم یا DC نامند . چنانچه جهت جریان ثابت نباشد و به عبارت دیگر ، الکترونها نخست در یک جهت جریان یابند و بعد جهت خود را عوض کرده و عکس جهت قبلی سیر کنند ، آن را جریان متناوب AC نامند.

در جوشکاری با قوس الکتریکی از هر دو نوع جریان استفاده می شود . جریان AC به وسیله ترانس جوشکاری یا مبدل و جریان DC به وسیله دینام جوشکاری یا رکتی فایر تامین می گردد .

شدت جریان در جوشکاری

به تعداد الکترونهایی که از یک نقطه ازمدار در زمان واحد می گذرد شدت جریان عبوری گویند . اگر در یک ثانیه به اندازه یک کولن یا تعداد 10×82/6 الکترون از یک نقطه از مدار بگذرد ، جریان عبوری یک آمپر است که آن را با حرف I نشان می دهند . جریان جوشکاری به وسیله آمپر اندازه گیری می شود . استفاده از ولتاژ بالا در قوس خطر شوک الکتریکی دارد . بنابراین با توجه به روابط زیر در جوشکاری از شدت جریان زیاد و ولتاژ کم استفاده می شود تا حرارت کافی برای ذوب موضعی فراهم شود .

محدوده شدت جریان جوشکاری باقوس الکتریکی : در جوشکاری با الکترود دستی معمولا 350 میلیمتر طول و قطری بین 5/2 تا3/6 میلیمتر دارند . تمام شدت جریان جوشکاری از هسته فلزی الکترود عبور می کند و چون دارای مقاومت الکتریکی است ، در آن گرما ایجاد می شود و اگر خیلی گرم شود ، خطر ذوب زودرس الکترود وجود دارد و زودتر از آن پوشش الکترود لطمه خواهد دید . با توجه به این نکات ، سازندگان الکترودها حداکثر جریان را برای هر نوع الکترود مشخص می کنند .

اختلاف پتانسیل در جوشکاری

عامل عبور الکترونها در یک هادی ، فشار الکتریکی یا اختلاف پتانسیل است به عبارت دیگر فشاری است که موجب راندن الکترونها را از مقاومت الکتریکی عبور می دهد .

واحد فشار الکتریکی ولت است و آن اختلاف پتانسیلی است که موجب شود یک کولن ، کاری معادل یک ژول انجام دهد .

جریان الکتریکی در مدار به جریان آب در سیستم لوله کشی شباهت دارد.

در این سیستم یک تلمبه موجود است که آب از یک سو فشار قرار می دهد و باعث عبور جریان آب از سوپاپ تنظیم می شود .

در مدار الکتریکی ، مولد جریان (باتری-ژنراتور-دینام جوش) همچون پمپ در سیستم لوله کشی یاد شده عمل میکند و فشار الکتریکی به وجود می آورد تا الکترونها حرکت کنند و بتواند از مقاومت بگذرند به عبارت دیگر ، عبور الکترونها از قوس الکتریکی است که از طریق ترانس یا دینام جوشکاری تامین می گردد .

ولتاژ مدار باز و ولتاژ قوس الکتریکی : برای انجام جوشکاری و برقراری جریان الکتریکی در مدار نیروی محرکه یا ولتاژ لازم توسط دستگاه جوشکاری تامین می شود و بسته به نوع دستگاه جریان DC یا ACولتاژی معادل 80-50 ولت خواهیم داشت . همزمان با تشکیل قوس الکتریکی ولتاژ افت می کند و تقریبا به نصف یا کمتر می رسد .

محدوده ولتاژ در جوشکاری با قوس الکتریکی : ماکزیمم ولتاژ قوس 40 ولت است زیرا کار با ولتاژ بیشتر احتمال خطر شوک الکتریکی دارد از سوی دیگر ، برقراری و پایداری قوس الکتریکی با ولتاژهای کم دشوار است .

ولتاژ مدار باز دستگاههای جوشکاری در محدوده 50 تا 80 ولت است ولی در بعضی از دستگاههای جوشکاری پیشرفته ، به منظور افزایش ایمنی پس از قطع عمل جوشکاری ولتاژ دو سرکابل به طور اتوماتیک تنزل می یابد و در حد بسیار پایینی قرار می گیرد تا هنگام تعویض الکترود برای جوشکاری کمترین احتمال شوک الکتریکی وجود نداشته باشد . در این دستگاهها با اولین تماس الکترود به کار و عبور جریان ضعیف از مدار جوشکاری ، کنتاکتور تعبیه شده در دستگاه به طور خودکار ولتاژ اصلی را وارد مدار می کند تا قوس تشکیل شود .

بلافاصله پس از برقراری قوس ، ولتاژ افت می کند و به حدود نصف می رسد که به آن ولتاژ قوس می گویند . در بعضی از دستگاههای جوشکاری ، کلیدی برای تغییرات جزئی در ولتاژ قوس وجود دارد زیرا افزایش نفوذ جوش می شود . افزایش ولتاژ طول قوس را نیز افزایش می دهد و کار کردن با طول قوس بلند موجب کاهش حفاظت منطقه مذاب و ستون قوس از اثرات زیان بخش اتمسفر نیز خواهد شد .

مقاومت الکتریکی قوس

همه اجسام جریان الکتریکی را به یک اندازه هدایت نمی کنند . هادیها اجسامی هستند که جریان را به راحتی از خود عبور می دهند و عایقها برعکس از عبور جریان جلوگیری می کنند .

علت این است که هادیها مقدار زیادی الکترون آزاد دارند . بیشتر فلزات هادیهای خوبی هستند یعنی دارای قابلیت هدایت الکتریکی هستند .

دسته دیگری از اجسام در برابر عبور جریان و حرکت الکترونها مخالفت می کنند و بنابراین دارای مقاومت الکتریکی هستند . واحد مقاومت الکتریکی اهم است .

در یک مدار جوشکاری ، کابلهای انبر و اتصال هادیهای خوبی هستند . انبر جوشکاری نیز براحتی جریان رااز خود عبور می دهد . مغز فلزی الکترود هم مقاومت زیادی ندارد ولی فاصله بین الکترود و کار دارای مقاومت زیادی است هر قدر فاصله الکترود با کار زیادتر شود ، مقاومت این قسمت از مدار افزایش می یابد و با کم شدن الکترود با کار از مقاومت هم کاسته شود .

گرمای زیاد قوس موجب میشود که اتمسفر بین الکترود وکار و همچنین گازهای تولید به وسیله روپوش الکترود ، یونیزه شود و مقاومت الکتریکی قوس کاهش یابد . فاصله بین الکترود و کار مورد جوشکاری را طول قوس گویند . پس می توان گفت طول قوسهای کوتاه مقاومت کمتری دارند و طول قوسها بلند دارای مقاومت بیشتری هستند .

مقامت قوس باعث تبدیل انرژی الکتریکی به حرارتی می شود ولی مقاومت سایر قسمتها مدار باید درحد مینیمم باشد . چنانچه محل اتصال کابل جوشکاری به دستگاه و انبر جوشکاری و غیره محکم نباشد یا طول کابل جوشکاری زیاد باشد یا از کابلهای کم قطر استفاده شود ، به علت وجود مقاومت در مدار ، افت ولتاژ پیش می آید که موجب بروز اختلال در کار جوشکاری خواهد شد .


بررسی غزل در لغت

پیش از آغاز گفتگو در این مورد شایسته است یاد آوری شود که آنچه در این روزگار به مناسبت دگرگونی ارزش ها و پیشرعت علوم ادبی و تغییر بینش و ارزیابی مسائل، پایه و اساس داوری است با معیارها و داوری گذشتگان که در روزگاران پیشین می زیسته اند تفاوت فاحش دارد ولی از آنجا که برای بررسی هر موضوع به نظر داشتن به داوری ها و معیارهای گذشته که برخی از آن ها هنوز
دسته بندی تاریخ و ادبیات
فرمت فایل doc
حجم فایل 13 کیلو بایت
تعداد صفحات فایل 19
بررسی غزل در لغت

فروشنده فایل

کد کاربری 8044

تعاریف غزل

پیش از آغاز گفتگو در این مورد شایسته است یاد آوری شود که آنچه در این روزگار به مناسبت دگرگونی ارزش ها و پیشرعت علوم ادبی و تغییر بینش و ارزیابی مسائل، پایه و اساس داوری است با معیارها و داوری گذشتگان که در روزگاران پیشین می زیسته اند تفاوت فاحش دارد ولی از آنجا که برای بررسی هر موضوع به نظر داشتن به داوری ها و معیارهای گذشته که برخی از آن ها هنوز همچنان وجود داشته و قابل پذیرشند نیاز هست،‌ از این رو به بررسی تعاریفی که از پیشینیان در مورد ( غزل )‌ موجود است مبادرت می شود:

(‌فرهنگ اسلامی )‌ذیل غزل تعریف این گونه شعر را از نوشتة (‌گارسن دوتاسی ) چنین می آورد:

غزل: شعر کوتاهی است بیش از چهار و کمتر از پانزده بیت که در مصراع اول هم قافیه است و این قافیه در مصراع چهارم و ششم و تا آخر ادامه دارد و در پایان آن معمولاً شاعر نام خود را می آورد که تخلص نامیده می شود.

مضمون شعر معمولاً ( عشق- تغزلی) است ولی مضامین دیگری از گونة شراب، بهاره،‌سرنوشت وغیره نیز در آن وارد می شود. شکل شعر باید بسیار ممتاز باشد وبه ویژه از نظر زبان نباید کلمات خشن و ناخوش آهنگ در آن به کار برده شود، غزل نوع شعری است که مورد علاقه بسیار زبان های پارسی و هندو ترکی است.

استاد جلال همائی درکتاب ضاعات ادبی خود می نویسد:

غزل در اصطلاح شعرای فارسی اشعاری است بریک وزن و قافیه،‌با مطلع مصرع که حد معمول متوسط مابین پنج بیت تا دوازده بیت باشد، گاهی بیشتر از آن تا حدود پانزده و شانزده بیت، و به ندرت تا نوزده بیت نیز گفته اند، اما از پنج بیت کمتر،‌ چون از 3 و 4 بیت باشد می توان آن را غزل ناتمام گفت و کمتر از 3 بیت را به نام غزل نشاید نامید.

کلمة غزل در اصل لغت به معنی عشق بازی و حدیث و عاشقی کردن است و چون این نوع شعر بیشتر مشتمل بر سخنان عاشقانه است آن را غزل نامیده اند. ولیکن در غزل سرائی ، حدیث مغازله شرط نیست، بلکه ممکن است متضمن مضامین اخلافی و دقایق حکمت و معرفت باشد و از این نوع غزل های حکیمانه و عارفانه نیز بسیار داریم که نمونة آن را نقل خواهیم کرد.

فرق میان غزل با تغزل قصیده آن است که ابیات تغزل باید همه مربوط به یک موضوع و یک مطلب باشد، اما درغزل تنوع مطالب ممکن است، چندانکه آن را شرط غزل دانسته اند، غزل هر قدر لطیف تر و پرسوز و حال تر باشد مطبوعتر و گیرنده تر است و همان اندازه که درقصیده ضخامت و جزالت مطلوبست، در الفاظ و معانی غزل باید وقت و لطافت به کار برد و از کلمات وحشی و تعبیرات خشن و ناهموار سخت احتراز کرد.

غزل در لغت

به مفاهیم غزل در فرهنگها توجه کنیم:

فرهنگ دهخدا، ( غزل) را به نقل از برخی فرهنگ ها اسم مصدر به عربی به معنی رشتن و مغزول را لغت از آن یاد کرده است و به نقل از ترجمة علامة جرجانی صف‍حة 73 ریسمان رشتم و به نقل از غیاث الغات ریسیدن آورده است.

همین فرهنگ معانی دیگرغزل را با مأخذ آن به ترتیب زیرآورده است:

* مصرعربی سخن گفتن با زبان و عشق بازی نمودن( منتهی الارب)

* حدیث زنان وحدیث عشق ایشان کردن ( آنندراج)

* محادثه با زنان ( اقرب الموارد)

* بازی کردن با محبوب، حکاین کردن از جوانی و حدیث صحبت و عشق و زنان (غیاث الغات)

* دوست داشتن، حدیث با زنان و صحبت با ایشان( تاج المصاد ربیهقی )

* ستایش کردن کسی، ثنای کسی ( مقدمه الادب زمحشری )

* سخنگوئی با زنان- عشق بازی ( منتهی الارب)

* گفتگوی پسران و دختران جوان و گفته اند به معنی عشق بازی با زنان است( اقرب الموارد)

سخنی که در وصف زنان و عشق ایشان گفته اند، ودر عرف شعرا، چند بیت مقرری است که پیش قدمه زیاده از دوازده نیست و متأخران منحصر در آن ندانند، و با لفظ خواندن و سرودن و زدن و برداشتن و طرح کردن و از قلم ریختم مستعمال است.

( آنندراج)

کلام موزون و مقفی در معاشقه و وصف حال زنان، شعری با مطلع و مقطع از پنج تا پانزده بیت و بیشتر در مدح و نوازش معشوقه و مغازله با او و جز آن.

در ( کشاف اصطلاحات فنون) آمده: غزل اسم مغازله است به معنی سخن گفتن با زنان و در اصطلاح شعر عبارت است از ابیاتی چند، متحد در وزن و قافیه که بیت اول آن ابیات مصرع باشد فقط و مشروط آن است که متجاوز از دوازده نباشد، اگر چه بعضی شعرای سلف زیاده از دوازده هم گفته اند، فاماالحال آن طریقه غیر مسلوک است و اکثر ابیات غزل را یازده مقرر کرده اند و هر شعری که زیاده بر آن بود، آنرا قصیده گویند، و در غزل غالباً ذکر محبوب، وصف حال محب و صفت احوال عشق و محبت بود( کذافی مجمع الضایع ) و غزل را تشبیب نیز گویند. و صاحب مجمع الضایع تشبیب را از انواع غزل شمرده است.

( فرهنگ معین) درمعانی غزل می نویسد:

حکایت کردن از جوانی و حدیث صحبت و عشق زنان.

( اسم مصدر) : سخنگوئی با زنان،‌ عشق بازی.

( در ادبیات ) : شعری مرکب از چند بیت ( معمولاً‌ 7 تا 12 بیت) که وزن آن ها مساوی و مصراع اول با آخر ابیات مقفی باشد، و موضوع آن وصف معشوق و می و مغازله است.

( در موسیقی ): یک قسمت از چهار قسمت نوبت مرتب، یعنی تألیف کامل است و آن چهار قسمت عبارتند از : قول، غزل ، ترانه ، فرو داشت.

تا مطربان زشوق منت آگهی دهند قول و غزل به ساز و نوامی فرسقمت

جالب اینکه در فرهنگ معین در بیشتر موارد ترکیب هائی مانند:‌ ( غزل پرداز، غزل خوان، غزل سرای ، غزل سرائی، غزلگوی) جز معانی دیگری که به جزء اصلی کلمه مرکب یعنی ( غزل) داده شدة معانی دیگری مانند: ( مطرب، در غزل- پرداز وغزل خوان و غزل سرای)‌ و (‌ مطربی ، در غزل سرائی و غزل گوئی )‌ داده شده است که دلیل دیگری به ارتباط ادبیات غنائی به ویژه نوع غزل، با موسیقی است چنانکه اشارة شاعر ارجمند حافظ نیز در بیت:

غزلیات عراقی است سرود حافظ که شنید این ره دلسوز که فریاد نکرد

نیز گواه همین معنی ومنظور از ( عراق) راهی است در موسیقی،‌ به این ترتیب با توجه به معانی و مفاهیمی که صاحبان فرهنگ های گوناگون برای غزل آورده اند یک زمینة کلی از مفهوم غزل که عبارت از بیان حال عشق و وصف معشوق و احوال جوانی و هم نشینی در بزم با زنان و فنون عشق بازی و گاه پیوسته با نوای مو سیقی است به دست می آید.

غزل، برجسته ترین گونة شعر غنائی فارسی

با آنچه در زمینة ادبیات غنائی گفته شد مشاهده می شود که سابقة اشعار غنائی در ایران به مفهوم کلمات موزون و سرودهای هجائی و غیر مقفی که همراه با آهنگ یا نوای موسیقی خوانده شود بسیار زیاد و دیرینگی آن نسبتاً به تاریخ پیدائی این گونه ادبیات در زبان برخی اقوام و ملل بسیار بیشتر است.

اگر چه همانطور که گفته شد، آثار مکتوب بسیاری از اشعار غنائی و سرود ها جز در برخی موارد در زبان پهلوی و دری و گاه در گویش های محلی ایران در دست نیست، ولی بیشتر قراین و شواهد و آثاری که از سرودهای خسروانی و قول شاعران بزرگ و اشاره های مکرر آنان به سرود های مزبور، به ویژه در دورة ساسانیان موجود است، گواه راستینی بر وجود این گونه ادبیات در ایران کهن می تواند باشد.

باید توجه داشت که جز آنچه گفته شد در زمینه ادبیات و اشعار غنائی، تا صدر اسلام و از آن پس تا آغاز شعر فارسی دری، نمونه های دیگری از اشعار غنائی در ادبیات ایران نمی توان به دست داد، بلکه تجلی اشعار غنائی را به ویژه به مفهوم واقعی و تعاریفی که برای این گونه ادبیات باز گفته شد، در نخستین جلوه های شعر موزون و مقفای فارسی دری می توان جستجو کرد، زیرا چنان که خواهیم دید، حتی نخستین و ابتدائی ترین آثار شعر فارسی دری که بر اساس بحور عروضی و همراه با وزن و قافیه سروده شده بود از جلوه های غنائی بهره داشت و این کیفیت همراه با سیر تکامل شعر فارسی، در گونه های مختلف از نظر شکل به گونة مثنوی و غزل و مسمط و ترکیب بند وغیره، رفته رفته به مرحلة کمال رسید،‌ ولی در این میان تنها غزل فارسی را با توجه به صفات بارز معنوی آن می توان برجسته ترین نوع ادبیات غنائی ایران به شمار آورد.


بررسی ابزارکار و کاربرد چوب در هنرهای دستی

زندگی انسانها از اولین دوران با هنر آمیخته بوده و به تدریج که آدمی رشد کرد و به تکامل رسید، هنر نیز همزمان با رشد انسان تکامل یافته است
دسته بندی هنر و گرافیک
فرمت فایل doc
حجم فایل 21 کیلو بایت
تعداد صفحات فایل 39
بررسی ابزارکار و کاربرد چوب در هنرهای دستی

فروشنده فایل

کد کاربری 8044

مقدمه:

زندگی انسانها از اولین دوران با هنر آمیخته بوده و به تدریج که آدمی رشد کرد. و به تکامل رسید، هنر نیز همزمان با رشد انسان تکامل یافته است.

کار معرق قبل از اینکه بعنوان یک شغل و راهی برای تأمین زندگی و امرار معاش برای خودی هنرمند باشد در ریشه خانواده در ریشه هنر بوده و می باشد.

هنر بیان کننده حالتهای عاطفی و روحیات انسانی است که به شکلها مختلف نمایش داده می شود. هنز از لحاظ زمانی و دوره ای به دو دورة کلاسیک و معاصر تقسیم می شود:

هنرهای کلاسیک کم ریشه در زندگی مردم دارند با‌ آداب و سنتهای و محیط هر منطقه رشد یافته اند، اینگونه هنرها در ایران به مینیاتور، تذهیب، ضیاکاری، رزی بافی، قالی‌بافی، کاشی کاری، سرامیک سازی، طفرنی، خانم کاری، منبت و معرق کاری شهرت یافته که در کل « هنرهای سنتی » شناخته شده اند.

معرق: معرق در معنای کلمه « اصولاً هر چیز رگه دار را گویند» ولی مفهوم آن را در این نوع بخصوص هنر، ایجاد نقشها و طرحهای زیبایی است که از دور بری و تلفیق چوبهای رنگی روی زمینه ای، از چوب یا پلی اسنر سیاه شکل می گیرد.


1- ابزارکار و کاربرد آن:

1-1 اره دستی:

در آن ارة معمولی با دستة چوبی است – که دارای تیغه های گوناگون برای بریدن تکیه‌های بزرگ چوبی بکار می رود

2-1 اره چوب بر واره فلز بر (اره های مویی )

اره های چوب بروارة های فلز بر دارای تیغه های باریک به طول 13 سانتی متر که دنده‌های آن به ترتیب در فلز بصورت زوج ( دو ملخه ) و در چوب بصورت فرد (یک‌ملخه) با فواصل (2-2) کم قرار دارد. این تیغه ها بر سر کمان متصل می شود. تیغ اره های فلز بر با شماره دو صفر، یک و دو آن برای بریدن صدف و عاج و شبه عاج استفاده می شود. تیغ اره های چوب بر مورد استفاده در معرق کاری با شماره دو صفر و یک است.

3-1 پرس برقی

دستگاهی است برقی، که چهار ستون آهنی که سه صفحة مستطیل شکل از چهار زاویه، به ستون ها متصل شده است و در قسمت بالای این چهار ستون حجم مکعب مستطیل آهنی قرار دارد که موتور و دستگاه گرم کننده در این قسمت جای گرفته است و با روشن کردن آن در حال حرکت صفحات، گرمابه وسیلة به هر یک از صفحات مستطیل شکل وصل شده است.


4-1 پرس دستی (پیچ دستی)

وسیله ای است فلزی، شامل خط‌کشی قطور به طول 25 الی 50 سانتی متر که دو قطعه بصورت افقی یکی ثابت در انتهای خط کش و دیگری که اهرم نامیده می شود در بالای آن به صورت متحرک قرار گرفته است.

یک پیچ بزرگ که یک دسته چوبی دارد و ابتدای اهرم متحرک نصب شده است. این وسیله برای ثابت نگهداشتن اشیا و تحت فشار قرار دادن ( پرس کردن) قلعه های کوچک معرق شده استفاده می شود.

5-1 پبشکار

قطعه چوب مستطیل شکلی است به طول 20 سانتی متر وعرض ان 10 سانتی متر که یک طرف عرض ان بر لبة میز نصب می شود و در میان طرف دیگر، شیاری بطول تقریبی 4 سانتی متر و عرض 1 سانتی متر وجود دارد، این تخته بصورت معلق بر لبة میز متصل شده و از آن برای خرد کردن و دوربری نقشهای چوبی استفاده می گردد (شکل‌1-2)

6-1 تیزک

قطعه فلز نوک تیزی است که قابلیت انعطاف بسیار دارد و برای برداشتن نقشها چوبی بریده شده از درون قالب خود استفاده می شود (شکل 2-2)


7-1 چکش

همان چکش معمولی ککه مورد استفاده عمومی است و برای کوبیدن میخ بکار می رود در معرق نوع 100 گرمی آن استفاده می شود (شکل 2-2)

8-1 سوهان تخت

سوهانی به طول 45 سانتی متر که تا اندازه 35 سانتی متر آن به پهنای 5/3 سانتی متر و 1 سانتی متر باقیمانده در انتها باریک می شود در موقع کار بعنوان دستگیره استفاده می‌شود.

9-1 سوهان چوب ساب

تیغه ای فلزی بطول 30 سانتی متر که دسته ای پلاستیکی آن متصل است که برای صیقل دادن سطح شئ معرق شده بکار می رود.

10-1 کمان اره

وسیله ای است فلزی و منحنی شکل مانند نعل اسب که دسته ای چوبی با یک سر آزاد آن متصل است و تیغه هایی با شماره های متفاوت به وسیلة دو پیچ (خروسک) به دو سر کمان اره متصل می شو، که قوس این کمان اره با شل کردن دو پیچ (خروسک) بلندتر می شود که باعث کارکرد راحتر در سطوح سی های بزرگ تر می شود.

هنگام بکار بردن این وسیله حتماً باید دقت کرد که کمان ان به حالت افقط و به فاصلة 1تا 2 سانتی متر تا کتف قرار بگیرد و تیغه آن با تختة پیشکار زاویه درجه تشکیل بدهد.

12-1 رنده دستی

قطعه ای چوبی است که در وسط ان ورقه مستطیل شکل فلزی با لبة تیز که برای رنده کردن و پرداخت چوب ها بکار می رود. این قطعه دارای دو دسته چوبی است.

13-1 سنگ نفت

قطعه سنگ نفت رنگی است که در میان قالبی از چوب های گرفته است و برای تیز کردن تیزک از ان استفاده می شود. این سنگ دارای دو سطح دندانه دار زبر و نرم می‌باشد که ابتدا نوک تیزک را بوسیلة دندانه های زبر و درشت تراش داده می شود و سپس با دندانه های ریز منتقل می دهند، سنگ نفت را همیشه در مقداری از نفت نگهداری می شود تا مقدار از چوبی نفت در آن نفوذ کند (شکل 3-2)

14-1 گاز انبر

وسیله ای است فلزی شامل دو دسته و دولبة قوس دار دو دسته با اندازه ها یکسان قرار دارد و بتدریج به هم نزدیک می شوند تا در نقطه ای به یکدیگر متصل شوند در معرق ز شماره 6 گاز انبر استفاده می شود. و از این وسیله برای بیرون آوردن میخ از محلی که چوبها را موقتاً بهم متصل کرده است استفاده می کند.


15-1 لیسه

قطعه فلزی است مستطیل شکل بضخامت یک میلیمتر که قابلیت انعطاف بسیار دارد و برای جمع‌ آوری براده ها از سطح کار و همچنین پرداخت آن قرار می گیرد.

16-1 گونیا

خط کشی است فلزی به طول 50 سانتی متر که در انتها به یک فلز قطور صاف به طول 5/13 سانتی متر متصل شده که با خط کش تشکیل زاویة قائمه را می دهد، که برای صاف کردن لبه های ناصاف شئ معرق شده استفاده می شود.

17-1 ماشین پرداخت ( فرز)

دستگاهی بطول 45 سانتی متر که از سه قسمت:

الف- دسته

ب- بدنه

ج- صفات پرداخت کننده تشکیل شده است.

- صفحات پرداخت کننده دستگاه پرداخت کننده:

1- صفحه سنگ سمباده:

صفحه دایره شکل بقطر 18 سانتی متر که میان آن دایره ای بقطر 2 سانتی متر خالی است که محل قرار دادن مهره پیچ متصل کننده به بدنه است.


2- صفحه پوست بره ای:

پوست بره دباغی شده دایر شکلی است بقطر 18 سانتی متر که کناره ای
پارچه ای وارده این صفحه بر روی صفحه سنگ سمباده قرار می گیرد و بوسیله یک بند، که کناره پارچه ای را در زیر سنگ سمباده جمع کرده و محکم کند.

3- صفحه پرداخت:

صفحه ای است دایره ای شکل از جنس نمد و بقطر 18 و ضخامت 5/2 سانتی متر و دایره ای به قطر 5/4 سانتی متر در مرکز آن قرار دارد که محل قرار گرفتن مهره هیچ متصل کننده بدنه است، از این وسیله برای پرداخت اولیه معرق استفاده می کنند.

18-1 مته دستی:

وسیله ای است بطول 30 سانتیمتر که شامل: سرمته، بدنه و دسته است. (شکل 2-2)

19-1 متر

20-1 مغار لیسه تیز کن:

سوهانی است سه پهلو که هر سه بر آن تراش داده شده و برای تیز کردن لبه های لیسه بکار می رود.

21-1 میخ

در معرق سه نوع میخ مورد استفاده قرار می گیرد: سایه، سنجاقی و کبریتی.



بررسی چاپ سیکل اسکرین

در چاپ سیکل اسکرین کوچکترین نوع اثر آن روی ساعتهای مچی و IC ها و قطعات ریزکامپیوتری و الکترونیکی است و بزرگترین اثر آن روی بدنه هواپیما هاو کشتی و بالانهای بزرگ می شود و در این نوع چاپ روی اجسام و وسایل بزرگ به خاطر حجم زیاد به صورت دستی انجام می شود که در این نوع چاپ این امکان وجود دارد که بتوانیم فیلم بعد از آماده کردن جدا کرده و از دستگاه در
دسته بندی هنر و گرافیک
فرمت فایل doc
حجم فایل 7 کیلو بایت
تعداد صفحات فایل 10
بررسی چاپ سیکل اسکرین

فروشنده فایل

کد کاربری 8044

مقدمه

در چاپ سیکل اسکرین کوچکترین نوع اثر آن روی ساعتهای مچی و IC ها و قطعات ریزکامپیوتری و الکترونیکی است و بزرگترین اثر آن روی بدنه هواپیما هاو کشتی و بالانهای بزرگ می شود و در این نوع چاپ روی اجسام و وسایل بزرگ به خاطر حجم زیاد به صورت دستی انجام می شود . که در این نوع چاپ این امکان وجود دارد که بتوانیم فیلم بعد از آماده کردن جدا کرده و از دستگاه در محیطهای باز و بزرگ بوده و به صورت دستی عملیات چاپ را انجام می دهیم . کارگاهای چاپ بیشتر در شهرهای بزرگ کار آیی زیاد دارند که در کنار آنها کارخانه ها و شرکتهای تولید کننده آن کارخانه جات و شرکتهای تاسیس می شوند.

محصول

در دو نوع چاپ :

در نوع

چاپ سیکل اسکرین : چاپ بر روی لباس و پارچه ، چاپ بر روی نایلون و نایلکس

چاپ ساده : چاپ تقویم ، چاپ کارهای اداری و تبلیغی ،چاپ آگهی ، رنگی در طرحها و رنگهای متفاوت .

مراحل تولید

برای چاپ بر روی پیراهن : طراحی طرح بوسیله کامپیوتر تهیه و شابلون (از جنس فیبر مخصوص) چاپ بوسیله شابلون کش

چاپ کارت تبلیغ و آگهی : حروفچینی و صحافی فرم بندی

برش کاغذ مورد اندازه چاپ تحویل سفارش

چاپ عکس : ابتدا اسکن عکس قسمت زیراکس برای چاپ و فتوکپی

در قسمت برش به وسیله دستگاه برش کاغذ به اندازه دلخواه و مورد نظر برش داده می شود .

در قسمت حروفچینی و صحافی حروف توسط صحاف در قالب چیده شده و پس فرم بندی گردیده و به قسمت چاپ فرستاده می شود .

در قسمت چاپ به وسیله دستگاههای چاپ طرح و سفارش مورد نظر را به چاپ
می رساند و پس از چاپ یک برگ از کار کیفیت ان بررسی می شود .

در قسمت تحویل سفارش , سفارشات توسط مدیر به مشتری تحویل می گردد .

مراحل تولید چاپ سیکل اسکرین :

طرح سفارش داده شده توسط طراح کارگاه با استفاده از کامپیوتر طراحی می شود و به آن کیفیت چاپ داده می شود که جهت فیلم گرفتن یا عکاسی دجار مشکل نشود . بعد از اجرای کامپیوتری طرح و نوشته یک عدد پرینت سیاه و سفید جهت عکاسی و فیلم به کارگاه

مواد اولیه

برای چاپ سیکل اسکرین

رنگ های P.V.C : مخصوص ظروف پلاستیک و نایلون و نایلکس

رنگ های پیک منت : مخصوص چاپ بر روی لباس و پارچه

رنگ های پفکی : برای چاپ بر روی لباس کودکان

راکل : جهت کشیدن رنگ بر روی فیلم

وسایل لازم امولسیون : حاوی پر کننده و مواد حساس به نور

تورهای ابریشمی : در امر فیلم سازی (چاپ تصویر) استفاده می شود.

مواد اولیه برای چاپ ساده :

مرکب و کاغذ از نوع روغنی برای کارت تبلیغ و از نوع کاغذهای A4 در رنگهای گوناگون

دستگاهها :

دستگاها برای چاپ سیکل اسکرین :

اتوماتیک یا چهار رنگ

دستی : با استفاده از از شابلون

دستگاهها برای چاپ ساده

برش : دستگاهی است که بوسیله الکتروموتور برقی کار می کند و یک نفر نیاز مند است که کاغذ مورد نظر را به اندازه مورد نظر برش د داده .

حروف برای حروفچینی :

دستگاه چاپ : این نوع دستگاه از نوع (اور جنیال هید) بوده و به صورت مخلی هستند . برای این قسمت دو عدد دستگاه لازم است و بوسیله برق سه فاز کار می کند .

دستگاه زیراکس :

از نوع 4550 توشیبا بوده و با برق مستقیم AC کار می کند .

نیروی انسانی :

برای انجام کار بر روی دستگاهای قسمت مختلف به 6 نفر کارگر نیاز مند هستیم . 2 نفر شابلون کش ، یک نفر برای طراحی قسمت کامپیوتر یک نفر کارگر دستگاه چاپ – یک نفر برای قسمت برش و زیراکس و یک نفر برای صحافی و حروفچینی


بررسی نقش خط در ایجاد فضای تجسمی

خط خطی کردن دوران کودکی از اولین تجربیات انسان است کودک احساسات خود را با کشیدن بر روی کاغذ دیوار یا هر شی و در دسترس نشان می دهد سپس در مدرسه با خطوطی آشنا می شود که مفاهیم خاصی دارند و برای نوشتن الفبا، اعداد و ترسیم اشکال هندسی، از آنها استفاده می کند انسان حتی خطوطی را تجربه می کند که تنها تصور ذهنی اوست اگر کف دو دست خود را بهم بچسبانید، در م
دسته بندی هنر و گرافیک
فرمت فایل doc
حجم فایل 24 کیلو بایت
تعداد صفحات فایل 43
بررسی نقش خط در ایجاد فضای تجسمی

فروشنده فایل

کد کاربری 8044

خط:

خط خطی کردن دوران کودکی از اولین تجربیات انسان است. کودک احساسات خود را با کشیدن بر روی کاغذ دیوار یا هر شی و در دسترس نشان می دهد سپس در مدرسه با خطوطی آشنا می شود که مفاهیم خاصی دارند و برای نوشتن الفبا، اعداد و ترسیم اشکال هندسی، از آنها استفاده می کند. انسان حتی خطوطی را تجربه می کند که تنها تصور ذهنی اوست. اگر کف دو دست خود را بهم بچسبانید، در مرز میان دستها خطی را می بیند که در حقیقت وجود ندارد. از همه جالب تر خط میان آسمان و زمین است که در ذهن، ایجاد می شود و همه ما می دانیم که چنین خطی وجود ندارد اما آن را می بینیم. بنابراین تشخیص و تجسم خط بصری مشروط است به این که در چه وسعتی، با چه فاصله ای و از کدام زاویه دید عناصر بصری را در یک ترکیب تجسمی قرار دهیم . در تعریف تجسمی خط عبارت است از حرکت یا شکل کمتر بصری خواه بدون ضخامت و به صورت مجرد و خواه با داشتن ضخامت و برجستگی، مثل مرزهای پیرامون یک مسطح، محل برخورد دو سطح با دو زاویه مختلف، مرز حاصل از تباین دو سطح رنگین با تیرگی متفاوت و اثر حرکت مداد، قلم مو یا یک شیء نوک تیز بر یک صفحه.


انواع خط:

کلمه خط ، انواع اندازه ها و ضخامت های مختلف خطوط مستقیم یا منحنی و خطوطی را که به تدریج پهن و نازک می شوند در بر می گیرد. خط در حوزه طراحی، قدیمی ترین ، مهمترین، و قاطع ترین عنصر بصری است. به طور کلی خط، نقله در حال حرکت و ساده ترین شکل نمایش تحرک است. قدرت، سرعت اجرا و سهولت بیان مفاهیم، از خط عنصری ساخته است که در بسیاری از موارد بر عناصر بصری دیگر برتری می یابد. مجموعه خطوطی که انسان می تواند به وجود بیاورد سه نوع است. حرکت یکنواخت دست در یک جهت خط مستقیم را به وجود می آورد که آن را می توان با سرعت و دقت ترسیم کرد. خط مستقیم در سه حالت مختلف ترسیم می شود. 1- حالت عمودی 2- حالت افقی 3- حالت مورب خط مستقیم در هر سه حالت جهت و تحرک دارد. ما به صورت غریزی نسبت به خطوط واکنش نشان می دهیم. خط عمودی از نظر بصری احساس تعادلی و ثبات را بر می انگیزد. خط افقی احساس آرامش و یکنواختی را ایجاد می کند. خط مایل پویاترین خط است، جنبش و کشاکش بصری ایجاد می کند، حالتی ناپایدار دارد و تحرک آن بر انجام عمل دلالت می کند. این خط برای ایجاد تعادل تصویری به عناصر دیگر نیازمند است. زیرا بین حالت خطوط افقی و عمودی در نوسان است. همچنین خطی که به سرعت کشیده شود و با خطی که آهسته ترسیم شود تفاوت دارد. خطوط ممتد و طولانی ثبات و استحکام بیشتری دارند. خطوطی که در زمان کوتاه و به صورت بریده بریده اجرا می شوند، احساس تزلزل را بر می انگیزد.

کیفیت خط:

خطوطی که در طراحی به کار می روند از نظر کیفیت بر دو نوع است.

1- خطوطی که بیشتر نشان دهنده حالت های عاطفی و روحی است.

2- خطوطی که بیش تر بر پایه نظم و تفکر ایجاد می شود و حالت آن از قبل پیش بینی شده است. خطو نه تنها تصاویر واضح و مشخص از آنچه دیده می شود ایجاد می کند بلکه برای تجسم بخشیدن به آنچه، در ذهن طراح شکل گرفته نیز بهترین وسیله است.

کارکردهای خط:

از مهمترین کارکردهای خط می توان از ایجاد خط مرزی یا کناره نما بدون استفاده از سایه و روشن جزئیات یاد کرد. خط خالاصه ترین وسیله تجسمی است که مرزهای اشیاء را تعیین می کند یکی دیگر از کارکردهای خط ایجاد بافت است. طراحی با استفاده از تکرار منظم انواع خطوط بافت ایجاد می کند. بافت کیفیت لایه سطحی پدیده هاست که با دیدن و لمس کردن آن را احساس می کنم. بافت حقیقی هم کیفیت بصری دارد وهم کیفیت لامسه ای که هر یک احساس را در انسان بر می انگیزد. در بسیاری بر می‌‌انگیزد در بسیاری از آثار هنری بافت کیفیت بصری دارد. یعنی در بافت ما از بافت تنها از طریق دیدن انجام می شود.

به کارگیری خطوط در ایجاد بافت تزئینی از دیگر کارکردهای خط است. بافت تزئینی برای پوشاندن سطح و ایجاد زیبایی به کار می رود. استفاده از خط برای ایجاد سایه و روشن هم یکی دیگر از کارکردهای خط است. همچنین برای نمایش حجم از خطوط هاشوری استفاده می کنیم که ایجاد بافت بصری می کند.

نقش خط در ایجاد فضای تجسمی

خط ، گاه بر اثر تلاش مستقیم در جهت ایجاد آن پدید می آید و گاه در اثر ارتباط دوسطح یا دو رنگ یا کنارة شکل و فرم در ارتباط با فضا، ایجاد می شود.

در حالت اول، خط تجسمی پدید آمده، نیرویی متحرک و پنهان را در طول مسیر حرکت خود جا به جا نموده، از بار عاطفی و حسی برخوردار است.

در حالت دوم، خط جنبشی محسوس نداشته و احساس یا کیفیت تجسمی خاصی را در خود خلاصه ندارد.

طول ظاهری خط از حرکت سریع و مرتبط هر جزء آن پدید می آید. خط ، گاه ادراکی (چشمی - مغزی) از طبیعت را انعکاس می دهد و گاه تصور و رویایی را براساس قواعد بصری که به سازمان دادن آن پرداخته اند، پدید می آورد.

توانایی خطوط در جهت ایجاد ساختار و نظمی منطقی و نیز قدرت بیانی و عاطفی خط، هر یک به گونه ای تحول یافته در نقاشی سدة بیستم به کار گرفته شد.

هر واحد خطی به تنهایی گرایش به امتداد یافتن در مسیری ثابت دارد. اما در مجموعه ای وحدت یافته و مرتبط، با امتداد یافتن در مسیرهایی هم جهت با سطوح ارائه شده، به تداخل در مسیرهای حرکت می پردازد و نفوذ سطوح در یکدیگر را نمایش می دهد کاربرد ساختاری خطوط به گونه ای که در این نگاره طرح گشته است.

پدیداری حرکت بصری به کمک خطوط

حرکت یک مسیر خطی است. چشم ابتدا و انتهای حرکت را دریافت نموده و مسیر حرکت را در می نوردد. منظور از حرکت بصری در نقاشی بوسیله خطوط، ایجاد پیوند میان اجزای اثر است. به طوری که گردش چشم را بر روی گسترة اثر ممکن سازد. حرکت بصری، گاه بارز و گویاست و با تأکید نقاش بر بازنمایی حرکت در کل اثر بوسیله خط توأم گشته و حرکتهای متفاوت خطی در مجموع به القای آن می پردازند، و گاه حرکت بصری به صورتی آشکار و با پدیدآوردن خطوطی مشخص رخ می نماید.

استفاده از خط در جهت به حرکت درآوردن چشم بر سطح اثر، در نقاشی تجربی سده های نوزده و بیست نمایشی آشکار و بارز یافته و به عنصری اساسی در نقاشی مبدل گشت.

عمق نمائی بوسیلة خط نیز به نوعی ایجاد حرکت بصری در جهت سه بعد نمایی می انجامد و حرکتی از سطح اثر به درون آن را پدید می آورد.

خطای باصره از ابتدائی ترین نقاشیهای بشر، توجه نقاشان را در جهت ایجاد القای عمق و فضاسازی به خود جلب نمود و پرسپکتیو خطی در عصر رنسانس، نقشی مؤثر در ایجاد وحدت وتمرکز در نقطه ای از اثر را بر عهده گرفت. پس از تدوین نظریاتی در رابطه با عمق نمایی خطی به همراه به کارگیری تنتالیته های رنگی؛ این آزمونها در آثار دوران باروک به اوج خود نزدیک گردید. تحول نقاشی در سدة نوزده باعث پدید آمدن تصویر نوینی از فضا و بعد گشت و پرسپکتیو خطی - جوی در جهت ایجاد فضایی سه بعدی و طبیعت گرایانه، ارزش بنیادین خود را از دست داد. اما بر نقش خطوط هدایتگر در جهت ایجاد و القای فضایی محصور و انتزاعی ، افزوده گشت.

نقاشی بصری با تکیه بر جلوه های تجسمی، به میزان زیادی از خط در ارائه نوع جدیدی از عمق نمایی سود جسته است.

حرکت خط بر روی صفحه، به طور منظم یا نامنظم به ایجاد سطح می انجامد استفاده از خط در جهت سطح آفرینی، به سطوح پدید آمده حالتی فعال و پرتحرک می بخشد و رابطة میان سطوح را به شکلی روشن و واضح مطرح می سازد. پس از درک این نکته که کاربرد صحیح ساختار خطی در ایجاد فضایی منسجم و یکپارچه نقشی اساسی بر عهده دارد. می توان اهمیت روابط خط و سطح را بیش از پیش طرح کرد و بر توانایی خط در ایجاد سازه ای تجسمی تأکید ورزید.

خطوط در عین حالی که قدرت پوشانندگی و ایجاد سطح را دارا می باشند، یکدیگر را محو و بی اثر نمی گردانند. چنانچه دو تصویر خطی را بر یکدیگر منطبق سازیم. هر دوی آنها قابل رؤیت خواهد بود. بدین ترتیب، دو یا چند سطح در هم ادغام شده و میزان نفوذ سطوح در یکدیگر را می توان بوسیلة خطوط نمایش داد.

حرکت سطح در فضا به صورت بسته و در جهت القای فرم را نیز می توان به مدد خط سامان بخشید و حجم داخلی و خارجی فرم را به طور همزمان مرئی نمود.

خطوط بریده بریده و منحنی، در کنار اتصالات ظریف افقی - عمودی مهار می گردد و حجمی ملموس و ساختمانی را بدون استفاده از سطوح تخت تیره - روشن و یا والورهای رنگی آشکار می سازد. قلم گذاری خطی در بیکره قبل از ایجاد بافت به بررسی ساختار پیکره پرداخته، گردش فرم در ارتباط با فضا را نمایش می دهد.

تفهیم حجم و نمایش فرم در نقاشی بوسیله خطوط توصیفی سایه دار نیز میسر است بدین ترتیب، فرم به گونه ای تخت و مسطح، بدون پرداخت به تیرگی - روشنی، به نمایش خویش می پردازد و بدون آنکه خطوط و شبکه خطی در داخل فرم، به طرح فرورفتگیها و برجستگیهای آن اقدام نمایند. تنها با به کارگیری خطوط کناره نمای سیال و سایه دار نمایشی از حجم را امکانپذیر می سازد.

شبکه بندی فشردة خطی به ایجاد سطوح می انجامد و شفافیت خطی، سطوح مختلف را در اتصال با یکدیگر به گونه ای به نمایش در می آورد که جلو و عقب بودن سطوح، احساس می گردد؛ بی آنکه حجم به گونه ای عینی مشاهده و لمس گردد.

قبل از خط و بافت، شفافیت خطی و به کارگیری آن در عرصه نقاشی و طراحی به نظمی نوین و گسترده تر در حوزة هنرهای تجسمی می انجامد. استفاده از این خصوصیت باعث می گردد. دو یا چند فرم به شکلی بصری در یکدیگر تداخل نماید. بی آنکه آشفتگی بصری پدید آید. بدین ترتیب نفوذ سطوح و اشکال در یکدیگر، به کمک خطوط ادامه یابنده به گونه ای مرئی هویدا می گردد و این درک یکبارة موقعیتهای متفاوت فرم در فضا را میسر می گرداند و درک تجسمی یکپارچه ای از ارتباط عناصر و میزان تداخل آنها در فضایی محصور را بدست می دهد.

بررسی روابط خط و سطح در جهت آفریدن فضایی تجسمی و مطالعه روابط مستقیم

خط و سطح در سدة گذشته، نقاشان را بر این نکته رهنمون گشت که یکپارچگی روابط خط و سطح در قالب قوانین بصری می تواند به طور هماهنگ با قوانین جهان عینی به ایجاد سیستمی بصری بیانجامد. هر چه زبان تصویر مخاطبین وسیعتری می یابد؛ تلاش در جهت تأثیری مستقیم بر گروهی انبوه از بینندگان افزایش یافته و سعی در دریافت نظم بصری - نهفته در قالب روابط خط و سطح - در جهت وسعت بخشیدن به حیطه زبان تصویری فرونی می یابد.

خط به اشکال گوناگون به پدیداری بافت می انجامد. تکرار منظم یا منظم خطوط در ککنار یکدیگر نیروی سطح را شدت بخشیده، بدان جهش و حرکت می بخشد. بافتهای خطی گاه توصیفی بوده و به نمایش خصوصیات فیزیکی و قابل لمس، در قالبی بصری، می پردازند، و گاه ویژگیهایی نظیر حرکت، ریتم، فشردگی و جهت را در قالب خطوط مرتبط، منتقل می نمایند.

بافت خطی در آثار ونگوگ به صورت منظم در ارتباط با رنگ و نمایش بیانی، به صورت قلم گذاری خطی به پوشش دادن سطوح می انجامد و بار عاطفی نهفته در سطح را افزایش داده، بدان تحرک و جهت می بخشد. بافت خطی گاه نیز در جهت القای تیره - روشنی به کار می رود. و به صورت خطوط منظم هاشوری، یا خطوط پیچان و زیگزاگ به نمایش درجه تیرگی و روشنی به وسیله پراکندگی یا تجمع خط، می پردازد.

در نقاشی پس از آنکه خطوط اصلی به گونه ای اساسی و ساختاری به ایجاد ترکیب بندی موفق گردند، به دو گونه یا در قالب کیفیات توصیفی به ایجاد روابط شکلی می پردازند و یا به گونه ای بیانی به طرح احساس نهفته در عناصر خطی اقدام می نمایند. خطوط می توانند به صورتی ریز شده و پرتحرک نیز به منظور ایجاد توازن در کل اثر به ایفای نقش پرداخته و در قالب بافت، به متعادل نمودن روابط تجسمی بپردازند.

آنچه در رابطه با خط و بافت قابل تأکید است. سعی در کنترل این روابط،‌در چهارچوب اثری متعادل است. هماهنگی بافت خطی و خطوط اصلی کنترل کننده، نقشی اساسی در ایجاد اثری تجسمی بر عهده دارد و آن را متعادل می گرداند.

خط و ترکیب بندی

خط از دیرباز نقشی اساسی در ایجاد کالبد اصلی نقاشی بر عهده داشته است. گسترة اثر، در ابتدایی ترین روش با خطی افقی تقسیم گشته و طبیعت یا طبیعت بیجانی را در خود جای داده است. یا با بخش بندی هندسی و بر مبنای شکلهای اصلی چون دایره، مربع و مثلث در داخل اثر عناصر را با هم می آمیزد. با رشد نقاشی در سده های نوزده و بیست رفته رفته نقاش از شبیه سازی فاصله گرفت و با توجه به همبستگی شکلها در ایجاد تعادل و توازن میان رنگ و فرم، نقش خط، به عنوان عنصری نهفته در روابط شکلی اثر بیشتر توجه نمود وترکیبات پیچیده خطی را پدید آورد. خطوط نهفته در اثر، به بیان روابط درونی اجزاء با یکدیگر می پردازد. و بصورت خطی خالص، قابل مشاهده نیست.


بررسی تاریخچه بازیگران

بارها از خود پرسیده‌ام، چگونه می توان به این سئوال پاسخی داد که هم قابل قبول باشد و هم حق مطلب را ادا کرده باشد قبول، از نقطه نظر عام عرض کردم، چون می پندارم، تمام تئوری‌ها در بازیگری راهگشا و ضروری اند ولی هیچ گاه در توضیح خود حق مطلب را ادا نکرده‌اند
دسته بندی هنر و گرافیک
فرمت فایل doc
حجم فایل 366 کیلو بایت
تعداد صفحات فایل 112
بررسی تاریخچه بازیگران

فروشنده فایل

کد کاربری 8044

مقدمه :

بازیگری چیست ؟

بارها از خود پرسیده‌ام، چگونه می توان به این سئوال پاسخی داد که هم قابل قبول باشد و هم حق مطلب را ادا کرده باشد. قبول، از نقطه نظر عام عرض کردم، چون می پندارم، تمام تئوری‌ها در بازیگری راهگشا و ضروری اند ولی هیچ گاه در توضیح خود حق مطلب را ادا نکرده‌اند .

حق مطلب یعنی آن اتفاق ظریف و پیچیده ای که در ذهن بازیگر شکل می‌گیرد و به روان و جسم او منتقل می‌شود. بین آن اتفاق از لحظه اول برخورد بازیگر با کاراکتر تا لحظه‌ای که وی روی صحنه است یک فضای خالی است و کلمات تئوریسین ها برای پر کردن این فضای خالی مثل وضعیت کهکشانها در فضای لایتناهی است. یعنی فضاهای خالی و بی‌توضیح بسیار بیشتر از کلمات و توضیح‌های ارائه شده‌اند. البته منظور من بخش تکنیکی قضیه، مثل تسلط بر بدن و بیان و … نیست. پر واضح است که برای بازیگری تئاتر باید توانایی‌های ویژه‌ای که جهت این کار لازم و ضروری‌اند کسب شود و تجربیات اساتید فن در این راه لازم الإجرا است ولی این فقط ابتدای ماجراست، نکته اصلی همان اتفاق درونی و تبلور کاراکتری دیگر در بازیگر است که همواره در هاله‌ای از ابهام قرار دارد. به نظر من و خیلی‌های دیگر هر انسانی یک نسخه منحصر به فرد است و دارای دنیای ویژه خود پس در هر کاری من جمله بازیگری، می تواند روش ویژه و منحصر به فرد خود را داشته باشد که البته این امر با شناخت تئوری‌ها و مکاتب و سپس عبور کردن از این شناخت صورت می گیرد و این در عمل به نحوه زندگی کردن بازیگر بستگی دارد که چگونه می‌اندیشد و از چه پنجره‌ای به تماشای باغ نشته است.

« بازیگر بدون در دست داشتن نظامی از ارزشهای فردی هیچ است، حتی اگر استعدادی شگرفت را دارا باشد[1] »

این جمله به نظر من کتابی خواندنی است. این نظامی از ارزشهای فردی او را منحصر به فرد و روش او را ویژه می‌کند، حال این تجربه است که روش ویژه‌ای او را پر رنگ تر کرده و او را در این راه پخته می‌کند.

(بازی می‌کنیم تا باشیم : )

« این واقعیت ساده است که همه ما، از آن کودکی که برای دست یافتن به بستنی، لب و کوچه خود را آویزان کرده است، گرفته تا آن سیاستمداری که به قصد تسخیر ذهن موکلان احتمالیش حنجره خود را پاره می‌کند، برای رسیدن به آنچه مورد نظرمان است به نوعی از بازیگری استفاده می‌کنیم. تصور اینکه بدون استفاده از بازیگری بتوانیم به زندگی خود در این جهان ادامه دهیم بسیار دشوار است. بازیگری به عنوان یک عنصر اصلی در تسهیل روابط اجتماعی به کار می‌رود و وسیله ایست برای حفظ منابع و به دست آوردن امتیازات در همه موارد زندگی»[2] این گفته‌ی مارلون براندو، حکایت از حضور چیزی به نام بازیگری در همه امور زندگی می‌کند. و برای همه‌ی افراد، صادق می باشد .


علت انتخاب نقش :

به گمان این حقیر کسی نقش را انتخاب نمی کند بلکه این نقش است که در مقام فاعل ظاهر می‌شود زیرا از خود روح دارد و زنده است، از اینرو منقوش خود را یافته و با او در می‌آمیزد. اگر تئاتر زندگی است شاید بتوان نتیجه گرفت که این فرضیه درست است زیرا در زندگی این نقش‌ها هستند که به سراغ ما میآیند، یعنی شرایط نقش‌های مختلفی را برای انسانها در نظر می‌گیرد، حتی مواردی که سخت بر این باوریم که انتخابگریم، معلوم نیست تحت تأثیر کدام بازی پنداریم .

اما این نمایشنامه و انجام وظیفه این جانب در شکل گیری این نمایش از این قرار بود که بنده در نمایشی به نام «گاهی اوقات برای زنده ماندن باید مرد » به نویسندگی و کارگردانی جناب آقای نصرالله قادری حضور داشتم و این متن در خلال تمرین‌های آن نمایش نگاشته شد و به گفته خود استاد بر اساس قابلیتهای شاگرد نوشته شد. حالا چند درصد از ذهنیات نویسنده بر صحنه متبلور شده، سئوالی است که باید از کارگردان پرسید !!

در هر حال، حداقل در این مورد به خصوص بدون در نظر گرفتن فرضیه، فاعل بودن نقش شرایط این نقش را برای من در نظر گرفت.

جذابیتهای موجود در نقش :

اولین عامل جذاب برای من راجع به این نمایشنامه، بسیار دوربودن من، به طور کلی از این نوع کار بود، که به نوعی مرا به تکاپو وا می‌داشت تا در عمل آنچه نمی دانم را بیاموزم. نثر مسجع و شاعرانه و در عین حال دشوار نمایشنامه در شیوه روایت برای روایت و کاراکترهای متعدد و همین که برای اولین بار چنین شیوه‌ای را تجربه می‌کردم، عواملی بود که سختی توانفرسای روح بخش کار را بیشتر می‌کرد و در واقع مرا به عنوان بازیگر با چالش‌های بیشتری روبه رو می کرد و مرا وا می‌داشت تا در دنیای جدیدی قدم بگذارم و چه جذابیتی بیش از این می‌تواند برای یک بازیگر وجود داشته باشد ؟

فصل اول


1ـ1‌ شناخت نویسنده

آقای نصر الله قادری فازغ التحصیل سینما در مقطع کارشناسی و تئاتر در مقطع کارشناسی ارشد ( هر دو با گرایش کارگردانی ) می باشد. او عضو هیأت علمی دانشگاه هنر می باشد. از آثار وی می توان به این کتابها اشاره کرد .

زندگی در تئاتر – زن، مذهب، نسل آینده در آثار برگمن – آناتومی ساختار درام، وقت پیچاپیچ محرمانه – کلی برای هیوا – افسانه لیلیث – به من دروغ بگو – زخمه بر زخم – مثل همیشه – هرا – غم عشق – مؤخره به سوی دمشق – زخم کهنه قبیله من – اسفنکس – فریادها و نجواهای دختر ترسا‌حکایت باور نکردنی بردار شدن سنساره – قابیل – افسانه پدر – حدیث آصف زهر خورده از بهر آنکه راست کردار بود – آه مریم مقدس – گاهی اوقات برای زنده ماندن باید مرد و «هنگامه‌ای که آسمان شکافت» و …

وی همچنین صدها مقاله، نقد، تحقیق و پژوهش در مجلات و نشریه های سینمایی، ادبی و تئاتر به رشته تحریر درآورده است وی در زمینه کارگردانی فیلم و بازیگری تئاتر نیز تجربیاتی داشته و کارگردان مطرح صاحب سبک تئاتر می باشد.

از شاخه‌های کارهای ایشان می‌توان به گره زدن مذاهب گوناگون در صحنه به گونه‌ای که انگار همه از حقیقتی واحد سخن می‌گویند، اشاره کرد و اینکه این حقیقت مطلق پس کی سکوت سنگین خود را خواهد شکست ؟

پیروزان « این چه حکایت است ؟ پس چرا خدا کاری نمی کند؟ »

او آثارش را با این جمله آغاز می کند : « به نام خداوند قلم، زیبایی، عشق » او به نوعی قلم، زیبایی و عشق را سه رکن اساسی زندگی می داند. نگاه او به عشق با فراقی معترض متجلی می‌شود . فراقی پر سوز و گداز و جانکاه اما خشمگین و عاصی و این عصیان توسط کاراکتر اصلی که تقریباً همیشه زن است، بروز پیدا می‌کند .

زن در آثار و تفکر وی مظهر تقدس، زیبایی، عشق و در عین حال اعتراض است. اعتراض به ظلمی که مردان یا جامعه در حق او روا داشته‌اند. در آرمان شهر او ابر زن در اوج اقتدار، مقدس، زیبا و مهربان است و حیات مردان به او بستگی دارد ولی این ابر زن در زمین مورد ستم واقع گشته و اسیر مردانی گشته که خود پرورده است. اگر زن نماد باروری و زایش باشد و زن زمین باشد، باید مردان نماد جامعه بشری باشند که نمی دانند با مادر خود زمین چه کنند ؟ شاید، کسی چه می‌داند ؟

او در عین حال با اسطوره و فلسفه سروکار دارد و آنها را همواره از منظر اجتماعی و سیاسی مطرح می کند و معتقد به همگام بودن با نبض جامعه است . او در صحنه عناصر متضاد را به شیوه‌ای خاص، به وحدت می رساند، این وحدت گاه در کلام و گاه در حرکت و گاهی همزمان برای این عناصر ایجاد می‌شود و مرکز همه این اتحادها، زن و عامل تفرقه، تعدی به زن عنوان می‌شود .

در نمایش «هنگامه‌ای که آسمان شکافت» فقط یک راوی حضور دارد که تصادفاً مرد است ولی فقط یک بار روی صحنه به سجده می‌افتد و آن، هنگامی است که مادر وارد می‌شود.

پیروزان ( در حال سجده ) : سلام ای بانوی بزرگوار، عذر تقصیرم بپذیر، من نمی شناختمت

از دیگر شاخصه‌های کارهای او به خصوص در این نمایشنامه « تاختن دوست و دشمن » بر کاراکتر اصلی است و اینکه همه به نوعی در پی نابودی و محو اساطیر در تکاپوی غم انگیز و مصیبت وار دست و پا می‌زنند .

1-2 بستر‌های نمایشنامه

رخدادگاه نمایشنامه کویری لخت و تشنه است که یک راوی به نام پیروزان واقعه عاشورا را از منظری دیگر روایت می کند که چگونه در پی حملة اعراب به ایران، او درگیر و دار جنگ اسیر می‌شودو کینه حسین بن علی (ع) با ازدواج امام حسین (ع) با شهربانو، در دل وی جوانه می زند و رشد می‌کند. او سالها با این کینه زنده می‌ماند تا بلکه روزی بتواند انتقام دلش را بستاند و با کشتن امام حسین ( ع ) به معشوق خود یعنی شهربانو برسد - او هنگامی به امام حسین می رسد که او در محشر کربلاست و طی دیدن و روایت ماجرا از منظر خود اساساً دچار شکی عظیم می‌شودو در نهایت دچار استحاله می‌شودو قربانی حسین (ع) می شود. پیروزان به گونه ای نماینده روح ملی ایران نیز هست و یکی از وجوه اوست که بازی می‌شود. کف صحنه به دو قسمت سبز و قرمز تقسیم شده و خط سفید وسط که خط تردید پیروزان نیز هست، مجموعاً پرچم ایران را تشکیل می دهند که اولیا در قسمت سبز و اشقیا در قسمت قرمز روایت می شوند. نمایشنامه به لحاظ تاریخی، داستان شهادت اسطوره‌ای را برای ما می‌گوید که یک ما به ازای ایرانی برای او داریم. ما به ازای حسین بن علی (ع) برای ما سیاوش است. آنها دو مظلومند که در پی ساختن آرامانشهر قربانی می شوند و هرگز برای جنگ پیش قدم نیستند، آنها دفاع می کنند.

به لحاظ تاریخی قدمت واقعه‌ای را که ما روایت می‌کنیم به تاریخ اسلام بر می‌گردد و به واقعه‌ی عاشورا اما پیوند زدن این واقعه تاریخی گذشته با وقایع امروز جامعه که یک انسان چگونه در محاصره‌ی دشمنانش تنها می ماند و چگونه به او نگاه می‌شود، نگاه سیاسی، اجتماعی، نویسنده است به مسائل روز با توجه به داستان تاریخی که روایت می‌شود. در مبحث شناخت نویسنده عنوان شد که او تمام دغدغه‌ها و علائقش را در باب اسطوره‌ی فلسفه، مذهب و … با بینش اجتماعی، سیاسی روز خود تلفیق می‌کند به گونه ای که به هیچ وجه قابل تفکیک نیستند. پیروزان در عین حال که پیروزان است و اسپهبد یزدگرد، در عین حال ایران امروز است و در عین حال روح کلی تاریخی ایران و در ضمن راوی ( بازیگر ) نیز هست.

یعنی یک ناظر کلی بر ماجرا:

این عناصر در ساختار روایی نمایشنامه در هم تنیده و غیر قابل تفکیکند. با توجه به اینکه فرهنگ ما یک فرهنگ شیعی، ایرانی است و این هر دو درهم تنیده‌اند و این فرهنگ، از لحاظ اجتماعی با رسمی شدن مذهب شیعه در دوره صفویه متولد شد و تا به امروز رشد کرده و تحولات تدریجی خود را داشته است.

اینکه چرا ایرانیان در برابر خلفا از افراد خاندان پیغمبرحمایت کردند و خود را شیعه نامیدند و از فرقه‌های معتقد به دستگاه خلافت، خصوصاً سنی ها جدا شدند، علل اجتماعی گوناگونی دارد. شاید ایرانیان نزدیکی به آل پیغمبر را از آن جهت حس می‌کردند که سلمان، انیس پیغمبر یک ایرانی بوده است یا که چون پیغمبر بنابر حدیثی از انوشیروان شاه ساسانی به احترام یاد کرده یا آنکه می گویند حضرت علی با فروش برده وار دختران اسیر یزدگرد سوم آخرین شاه ساسانی مخالفت کرد. کمااینکه در نمایشنامه نیز هست :

خلیفه : این زن و همراهانش را به سایر اسیران به فروش رسانید .

ایلیا : نه این کار نشاید، چرا که پیامبر اسلام فرمود با بزرگان و عزیزان هر قوم رفتار نیک داشته باشیم.

یا اینکه شهربانو، همسر امام حسین یک ایرانی و دختر یزدگرد سوم است که این مهمترین عامل پیوند اسلام و ایران در نزد ایرانیان به لحاظ تاریخی، اجتماعی محسوب می‌شود.


بررسی تاریخچه هنر

هنر قدیم است به قدمت بشریت تاریخ هنر ملت ها نموداری از استعداد ها و تواناییها و اندیشه ها و پشتکار و پایداری و استقامت آنها می باشد آثار مکشوف از طبقات مختلف زمین گویای تمدنهای گوناگون و اوضاع جغرافیایی و تأثیرات مذهب و سیاست و اقتصاد و سیستم حکومت اجتماعی و وضع زندگی ویژة ملت هاست
دسته بندی هنر و گرافیک
فرمت فایل doc
حجم فایل 58 کیلو بایت
تعداد صفحات فایل 112
بررسی تاریخچه هنر

فروشنده فایل

کد کاربری 8044

مقدمه

هنر قدیم است به قدمت بشریت- تاریخ هنر ملت ها نموداری از استعداد ها و تواناییها و اندیشه ها و پشتکار و پایداری و استقامت آنها می باشد... آثار مکشوف از طبقات مختلف زمین گویای تمدنهای گوناگون و اوضاع جغرافیایی و تأثیرات مذهب و سیاست و اقتصاد و سیستم حکومت اجتماعی و وضع زندگی ویژة ملت هاست.

کتاب حاضر که از ماقبل تاریخ آغاز شده و مطالب آن به وجهی فشرده به اوایل قرون وسطی پایان می پذیرد همانند سینمایی هنرهای مصور ملتهای: آشور، کلده، سومر، ایران، یونان، روم، هند و چین را از برابر نظر شما می گذراند و از تحول تمدنها و انگیزة نشیب و فراز آنها تا آنجا که بر ما مکشوف و معلوم گشته است خواننده را آگاه می سازد.

این کتاب به نیت تدریس در رشته باستان شناسی دانشکده ادبیات تهران ( که از سال گذشته به برنامة دروس این رشته افزوده گشته است) فراهم آمده است...

باستان شناسی مخصوصاً در کشورهایی مانند ایران که تمدنی بزرگ و باستانی دارند رشتة بسیار مهم و سودمندی است، زیرا صرف نظر از کشف آثار نبوغ نیاکان و دریافت راز مقاومت ها که درنشیب و فرازهای زندگی و تماس با ملل مختلف به مرحلة بروز و ظهور رسیده است ( و موجب غرور ملی و تقویت نیروی روانی و سرافرازی باطنی نسل حاضر و آینده است)، از نظر حسن جریان زندگی و تماس با ملل مختلف گیتی و جلب سیاحان و رونق بازار اقتصاد کشور نیز اهمیت بسزایی دارد.... هر چه بیشتر بدین رشته توجه شود، بیشتر فرزندان این آب و خاک و اجد صلاحیت علمی برای کاوش و کشف می گردند و کشور را از متخصصان خارجی که هرگز این علاقه و بی غرضی و اطلاع از آداب و رسوم محلی را ندارند بی نیاز می سازند. به سبب محدود بودن صفحات کتاب ارائه پاره ای تصاویر که شرح آنها در مت آمده است، میسر نشد و از هر سبک و یا موضوعی فقط یک یا دو نمونه ارائه گشته است امیدوارم با « پرژکسیون» و تصاویر رنگین که در دست تهیه است ( توأم با توضیح) رفع این نقصیه بشود.

دیباچة آموزنده ای از بانو« هلن گاردنر» آمریکایی دربارة رسم و رنگ و فرم و تکنیک و ساخت هنرها جهت مزید دانش، دانشجویان به وسیلة دوست و همکار عزیزم « بانو دکتر سمیمن دانشور» ترجمه شده است که موجب تشکر است... مطالب این دیباچه در زمینه هنرهای عینی است و در امر ذهنی یا فلسفة هنر، و اینکه: هنر چیست؟ وارد بحث نشده است فقط با یک جمله که: « هنر چیست، نمی دانیم: واقعیتی است که در دست ماست» از بسط مقال و تشریح مطلب و روشن شدن موضوع می گذرد... البته بحث بسیار پیچیده و بغرنجی است که قرون متمادی روی آن اندیشه شده و هر فیلسوفی آنچه به عنوان نظریه اعلام کرده است یکی از وجوه این واقعیت است....در دو کتاب زیبا شناسی که اینجانب تألیف کرده ام به عناوین مختلف از آن گفتگو شده است و چون تصور می کنم نپرداختن به این موضوع، جای خالی و ابهامی در کتاب حاضر باقی می گذارد، کوشش می کنم در همین مقام عصارة آراء و اندیشه های برخی از زیبا شناسان را که تاکنون تدوین شده است تذکار نمایم: برونتیر می گوید: « هنر چیزی و زیبایی چیز دیگری است»

گاستالا معتقد است: « هنر ساختة دست بشر است»

زیبا شناسی می گوید: « بشر پیش از آنکه دانشمند باشد هنرمند بوده است، زیرا حکومت خیال مقدم بر حکومت عقل و تجربه است»

زیباشناسی می گوید:« ساختة هنری محصول دانایی به وسیلة توانایی است»

زیباشناسی می گوید:« هنر لذت و شوری است که عینیت و موضوعیت یافته است»

زیبا شناسی می گوید:« هنر فقط نمایش، یا تجسم نیست، بلکه گزارش و ترجمه ای از روح هنرمند است».

زیبا شناسی می گوید:« هنرمند حقیقت نمی گردد، بلکه آن را خلق می کند».

زیباشناسی می گوید:« هنر مضراب یا زخمه طبیعت و زندگی است که بر تارهای عواطف و احساسات هنرمند نواخته می شود... از این رو همان طور که طبیعت رنگارنگ، و زندگی گوناگون است، عواطف هنرمند و تأثیر هنر او در بیننده در اعصار و طبقات و زمانها و مکانهای مختلف نیز گوناگون می باشد».

زیباشناسی می گوید: هنر زاییدة احوالیست که مستقل از تجسس برای حقیقت و اخلاق و سود و یا تحریک غرایز حیوانی است.

تن می گوید: « در زندگی جاری، اخلاق پادشاه است، ولی در قلمرو دانش و هنر، اخلاق را راهی نیست».

نیچه می گوید:« تشبیه همواره لذت بخش است، ما نیز از هنر لذت می بریم، زیرار هنر یک نوع تشبیهی از جهان است».

نیچه می گوید: هنر عبارت از فعالیت بشر به وسیلة اعلام و ابراز آرزوها برای یک زندگی عالی تر است.

نیچه می گوید: هنر گل زندگی است – و هنر مند دوست واقعی بشر است که این گل خوشبو را بدو هدیه می کند.

نیچه می گوید: تعریف هنر خیلی بغرنج تر از آنست که در یک جمله بگنجد شاید یک تعریف محکم آن اینست که:

« هنر بیان بلیغ ارزشهای (والور) تمام چیزهایی است که مربوط به زندگی است ( منظور از ارزش یا والور جالب و جالبتر بودن است) و اجتماعی بودن هنر از همین رو است که ارزشهای اجتماع را بیان می کند»

نیچه می گوید: « در تحلیل هنر همواره چهار هدف عمده مورد نظر است:

1- فعالیت خلاقة هنرمند

2- ساختة هنری

3- اقبال جامعه

4- ارتباط هنر با نظم جامعه»

گوته می گوید : « هر هنر، می یابد مانند هر زندگی و هر کار، از پیشه که لازمه اش تقلی داست آغاز گردد».

شیللر می گوید: هنر مایة زندگی کردن نیست، بلکه وسیلة بازی بی شائبه است« با زیبا، جز بازی نباید کرد».

شیلرر می گوید:« هنر دعوتی است بسوی سعادت»

خوشبختانه کتابخانه ای در دسترسم نیست والا تعداد این مثالها افزونتر می شد وا حتمالاً موجب کسالت خواننده می گشت... از آنچه تذکار شد چنین نتیجه گرفته میشود که در ابتدای امر، هنر معنای ساخت را داشته است و به تدریج هر چه ذوق آدمی لطیف تر گشته تجسس زیبایی با امر هنر بیشتر توأم شده است تا سرانجام زیبا و هنر تلفیق گشته اند که به عنوان « سودای عرفانی و علو روحانی» تعبیر شده اند.

دوران این تحول، بس دارز است و در پی آن تحول فلسفه ها می آید... برای زیبا شناس و فیلسوف، هر زمان واجد بازیهای فکری بی پایانی است که به جای دور تسلسل می توان آنها را « مارپیچ یا منحنی های بی پایانی است تفکرات هنری» نام نهاد، زیرا هرگز مانند دایره بسته نمی شود وم پیوسته در تعالی است. مشکلات چونی و چرایی هنر، مانند خود هنر هر روز بغرنج تر می گردد شیوه ها یا مکتب ها یکدیگر را طرد می کنند- قواعد و اصول کهنه و فرتوت از میان می روند- مبتکر هر هنری دوستاران نوی و بوجود می آورد- کلمات کهنه می شوند، تغییر می کنند- ذوقیات تازه ای به ظهور می رسند- حیرت ندارد، مانند همه چیز زندگی است، انقلاب و سرعت عجیبی در کار است- صد هنرمند نابعه در فرانسه می شمارند که سن آنان از حدود سی سال تجاوز نمی کند! دوستاران هنر آنان فراوانند و فریادهای تحسینشان بلند است....

زیباشناس و فیلسوف، تا می رود یکی را با دیگری قیاس کند اصل موضوع منتفی می شود....سال گذشته را در فرانسه گذراندم و دوستان هنری جدیدی یافتم، بحث و فحص و مطالعه کردم، سرانجام متوجه شدم: یا احساس تازه ای در جامعة جوان امروز پیدا شده که من فاقد آن هستم، یا واقعاً این جامعه دچار تب سوزانی گشته است که هذیان می گوید... می باید صبر کرد بحران بگذرد تا ببینیم چه باقی می ماند.

برخی از خصیصه ها یا کاراکترهای هنرمند و دوستار مشترک هستند و پاره ای مقایر یکدیگرند چنان که یک کار هنری برای سازنده اش امری است تحلیلی و برای بیننده امری است ترکیبی- فلسفة جدید، آنچه مشترک میان هنرمند و دوستار هنر است به پنج قسمت تشخیص کرده است:

1- عمل افتراق: یعنی موردی که وادار می کند ما امری از امور زندگانی را نادیده گرفته به فراموشی بسپاریم.

2- عمل تصفیه شهوات: شهواتی که محل و امکان اجرا در زندگانی ندارند و به وسیلة هنر اطفاء می شوند.

3- فعالیت تکنیکی: که بیشتر مربوط به سازنده است و دوستار هنر بندرت از آن اطلاع دارد.

4- عمل تکامل: که از طریق اجرای آرمانها و آمال زندگی گام نهادن است.

5- عمل افزوده: به لذتهای واقعی زندگی افزون است، خاصه برای آنان که کم دارند، یعنی لذت هایی جدید ایجاد کردن که به رایگان به دست آمده و تعلق به خود هنرمند است و از او سلب نمی گردد.

در این پنج اصل، دوستار هنر با هنرمند شریک است( ولی به وجهی مبهم و اندکی سطحی ) یعنی با این تفاوت که هنرمند قادر است خلق کند اما دوستار هنر قارد نیست.

همچنین برای هنرمند خلاق نیازهایی روانی قائل شده اند:

1- نیاز به بقای اثر یا دوام روح آثار

2- احتیاج به لذت، و فرار از ناملایمات و کسالتها

3- نیاز به خلق آثاری جهت ارضای حس خود پسندی و منیت و تفاخر و نشان دادن قدرت و توانایی.

4- احتیاج به عالم خلود، یعنی گریختن به جهانی آزاد و ایده آلی که ماوراء گرفتاری های اجباری زندگی است.

5- لذت مسبب بودن: این لذت در تمام افراد چه کوچک و چه بزرگ و حتی در حیوانات مشاهده می شود و صرف نظر از هنر، در تمام امور زندگی یک صفت بارزی است .... بقول، لسینگ: بشر، در هر تحریک شدید، قوای خود را بیش از آنچه که هست تصور می کند شعف قدرت،‌و لذت فتح ( که مسبب جنگهاست) از همین رو است.

ملاحظه می فرمایید که ما نیز سرانجام به نتیجه نهایی یا مثبتی نرسیدیم....منتهی، کاری که شد شاید این باشد که اندکی ذهن شما را روشن کرده و موجبات تفکر بیشتری را در این امور فراهم ساخته باشد. در خاتمه باید بگوییم که ممکن است در تحلیل اوضاع تاریخی و جغرافیایی و مذهبی و فلسفی کشورهایی که ذکر هنرشان در این کتاب آمده است و همچنین در کوششی که جهت نشان دادن تأثیرات مذهب و سیاست و اقتصاد هر کشوری در هنرهای آنان مبذول داشته ام چنانکه باید توفیق نیافته باشم و حتی خطاها و لغزشهایی نیز مشاهده شود ولی چون برای اولین بار چنین کتابی به زبان فارسی انتشار می یابد امید دارم همکاران گرامی و صاحبنظران و منتقدان بر اینجانب منت نهند و از نادرستی ها مرا آگاه فرمایند تا در چاپ آینده و یا در جلد دوم تصحیح گردد.

دیباچه

فرم های هنر

دیباچة حاضر از کتاب « هنر در طول قرون The art through the ages تألیف: خانم هلن گاردنر Helen Gardner نویسندة نامدار آمریکایی ترجمه شده است.

جوهر هنر: هنر چیست؟ نمی دانم..... جوهر اصلی این پدیدة اسرار آمیز و وصف ناپذیر ما را حیران می سازد. اما در عین حال بطور قطع و یقین می دانیم که از قدیمترین زمانها تاکنون افراد بشر تجارب فردی و خصوصی خود را به صور مجسمی منعکس ساخته اند که ما آنها را آثار هنری می نامیم.... و ضمناً می دانیم که هنر در زندگی بشر، اصلی اساسی است.

اگر از ما آثار معماری، نقاشی، کاشی سازی، موسیقی، شعر و نمایش و رقص را باز گیرند چه نوع زندگانی ما خواهد گشت؟

آثار هنری همواره موجود بوده و جاودانه وجود خواهند داشت و برای سعادت بشری اصلی اساسی بشمار می روند...آثار هنری تجارب انسانی هستند که شکل به خود گرفته اند و ما از دریچة حواسمان بدانها می نگریم و لذت می بریم ما نقاشی و رقص را با چشم می بینیم، ادبیات را با گوش می شنویم و هم با دیده می نگریم، موسیقی را استماع می کنیم، نقشی بر سنگ یا بر سطحی فلزی یا گلی را با دست لمس می کنیم و نرمی مخمل یا ابریشم را بمدد حس لامسه احساس می کنیم، لکن راه هنر به همین سادگی نیست... تأثیرات حسی ما به عکس العمل های احساسی منجر می شود. و ذکاء ما به عقل می انجامد و سرانجام، احساس و ذکاوت ما به مرحلة ادراک منتهی می گردد. این ادراک چگونه حاصل می شود؟ فرمولی قطعی و صریح موجود نیست که ادراک هنری را روشن کند. پیچیدگی یا تعقید پدیده ای که هنر نام دارد در آنست که از نظرهای گوناگون مورد بحث قرار می گیرد و هیچیک از این نظرها را بر دیگری برتری نیست- هر کس در برابر یک اثر هنری از نقطه نظر خود، نقطه نظری که عادت و اخلاق و روحیة شخصی او در آن دخالت دارد، قضاوت می کند و این قضاوت با قضاوت دیگری که دید خاص و متفاوتی دارد بی شک دیگرگون خواهد بود- در نقد هنری مهم این است که نقاد از تمام نقطه نظرها، هنر را مورد مطالعه قرار دهد، و این چنین ادراکی ذکاوتمندانه و غنی خواهد بود.

بنابراین در مطالعة یک اثر هنری می باید اصول زیر را در نظر داشت: باید دانست که یک اثر هنری عبارت از شکل یا فرمی است که هنرمندی آفریده است... این اثر بر اساس قواعد زمان و مکان و تمدنی خاص بنا شده است، دارای موضوع و محتوی می باشد و معمولاً خدفی را شامل است.

بهتر است در این اصول تعمق و موشکافی کنیم: هنری واجد فرمی است، یعنی دارای ساختمانی سرشار از زندگی است که به مجموعة هم آهنگی منتهی شده اسسست، این ساختمان اصیل باعث می شود که اثر هنری از اشیاء دیگر تمیز داده می شود... – این اثر راچه کسی آفریده است؟- هنرمند.- پس، هنر عبارت می شود از تجسم یک تجربة انسانی- و هنرمند هم کسی است که از میان تجارب زندگی خود موادی بر می گزیند، آنها را می آراید، یا می پیراید و بدانها شکل می بخشد» ( توماس مونرو Thomas Munro ) بنابراین خلق آثار هنری فعالیتی است ترکیبی یعنی عبارتست از انتخاب مواد و بهم پیوستن آنها بوجهی که مجموعه ای کامل از آن به دست آید. اگر این مجموعه دارای آن خاصیت نامحسوس «وحدت» باشد. اگر زندگی درونی در آن بدر بخش. هنرمند در خلق اثر خود توفیق یافته است. « تنها همین خاصیت نامحسوس است که اهمیت دارد» (لاورنس D.H.Lawrence ) – یک اثر هنری ممکن است از نظر تکنیک قابل انتقاد باشد و درعین حال عاری از حیات هم جلوه کند، اما وجود همین خاصیت درونی، و نامحسوس، آنرا مافوق انتقاد قرار دهد..، این گفته که از چینی ها ست مؤید این ادعاست: « اگر نقاشی بخواهد نقش ببری را با مهارت ترسیم نماید، در صورتی موفق می شود که در درون خویش احساس کند که خود به توانایی و قدرت ببری می باشد»

بیننده و منقد هنری، یک اثر هنری را از جهت مخالفی و را نقطة نظر هنرمند مشاهده

می کند. یعنی از نظر تحلیلی می نگرد نه از نظر ترکیبی ...به بیان دیگر تماشاچی، اثر تمام تمام شده، و شکل و فرم کامل را مشاهده می کند اما منقد می کوشد در بیابد که هنرمند چگونه مواد را بهم پیوسته است تا اثر کاملی را که اینک در برابر اوست بوجود آورده است... هر چند مشکل است که بیننده عین تجربة هنرمند را از دریچة اثر هنری او بیازماید، اما منقد اثر هنری، به این تجریه بی حد نزدیک می گردد و در اثر ممارست به جایی می رسد که عین احساس درونی ، یعنی جوهر و اصل روحی و نا محسوس هنر را درک می کند. گفتم: یک اثر هنری شکلی است که به وسیلة هنرمند از تجربة انسانی او ترسیم یافته است، اینک اضافه می کنیم: که ریشه و زمینة این اثر در تمدن ملتی است که هنرمند از آن بر خاسته است.

هنر در زمان وجود دارد و وابسته به زمان است- نیروهای اجتماعی، اقتصادی، سیاسی و مذهبی در هنر تأثیر شگرف دارند... از این نظرها که به هنر بنگریم، می بینیم هر فرمی در هر زمانی گویای سبکی است و سبک عبارتست از راه و رسمی معین، در زمانی که اثر هنری بوجود آمده است- سبک راه و رسمی است که تمام آثار هنری را در یک زمان، به رنگی خاص می آراید، رنگی که خاص زمان معین و خاصیت رنگی همان زمان است... معماری، نقاشی، مجسمه سازی، سفال سازی و فلز کاری- ادبیات، موسیقی،‌ نمایش و خلاصه تمام مظاهر هنری یک عهد به رنگ زمان همان عهد رنگ آمیزی شده اند..... به طوری که هر هنر در هر زمان بیان کنندة هنر دیگر همان زمان است، سبک نیز بسمان زمان، هرگز ساکن و ثابت نیست، بلکه گذر است... نطفة سبکی تکوین می یابد،‌ سپس به بلوغ می رسد، و آنگاه می پژمرد و زوال می یابد.... بنابراین ممکن است یک اثر هنری از سبک زمان خود پیروی کند، ممکن است یک اثر هنری انقلابی باشد و هنرمند چنین اثری دیده به آینده داشته باشد، به آزمایش بپردازد، مواد تازه ای را که سروش سبک نوی است در اثر خود بگنجاند.

همچنین گفتیم: هر اثر هنری دارای محتوی است، حتی آثاری نظیر ماسکها، سفالها و نقشهای مجرد یا هندسی. پارچه ها و کوزه ها و کاشیها که در بادی امر بنظر تزینی می آیند، ممکن است واجد یک معنای انسانی عمیق باشند..... محتوی هر اثر هنری، ارتباط مستقیمی به زمان آفرینش آن اثر دارد... تصادفی نیست که نقاشان عهد رنسانس این همه تصویر از حضرت مریم نقش کرده اند، و هم چنین اتفاقی نیست که نقاشان مدرن متوجه طبیعت جاندار شده اند و به نقش های مجرد و یا تزیینی صرف، توجه یافته اند و چینی ها در منظره سازی طریق کمال را پیموده اند، و نیز تصادفی نیست که نقش های روی آثار برنزی چین قدیم، و یا سفالهای سرخ پوشان بومی امریکا، این همه باد و باران را منعکس می سازد، و یا نقش اصلی حجاریهای مایان ها مارپردار، و یوزپلنگ می باشد.

بنابراین، هدف هنر، خود موضوع مهمی است که باید مورد مطالعه قرار بگیرد، به اغلب احتمال بسیار از آثار هنری به خاطر مقاصد و هدفهای معین بوجو آمده اند، شک نیست وقتی دیدار کننده ای پا به موزه ای می گذارد، متوجه این هدفها نمی شود، زیرا موزه انبان ذخیره ایست مصنوعی که در آن، اشیا، از زمان و مکان اصلی خود بسی دور مانده اند، اما اگر این اشیاء را تک تک مورد مطالعه قرار بدهیم و زمان و مبدأ آنها را در نظر آوریم، علت خلق آنها و همچنین سبب فرم خاصشان روشن می گردد، و در می یابیم که لباس ها و مجسمه ها مناسب بناهای خاصی بوجود آمده بوده اند. قالی ها برای کاخهای عظیمی بافته شده بوده اند، کوزه های هندی جهت حمل آب در دشتهای خشک به این شکل در آمده بوده اند، و صراحی های چینی بدان سبب بلند و باریک ساخته شده بوده اند که در مراسم پرستش در گذشتگان از می مالامال گردند.... هدف معماری، معمولاً به سهولت دریافته می شود. اما باید دانست که بسیاری از نقش ها، مجسمه ها، تزیین ها، سفالها و فلز کاری ها هم بسان معماری، برای هدفی بوجود آمده اند.

بنیاد شکل( یا جوهر فرم) از میان این همه موارد قابل مطالعه در هنر، بهتر است ابتدا به سراغ شکل یا فرم برویم و از چگونگی این دیدار سخن بگوییم.

فرم یا شکل، عبارت از مجموعه ای واحد و کامل و زنده ( ارگانیک) است- ترکیب عناصری است که مجموعه ای را بوجود آورده است. روش و سبکی است که هم آهنگی میان این عناصر برقرار کرده است، خلاصه عاملی است که شخصیت ممتاز و یگانه ای به مجموعه بخشیده است. مراد،‌ از لفظ زنده، یا ( ارگانیک) بر حسب « فرهنگ وبستر » چنین است: « زنده، یعنی واجد بودن ساختمانی کامل و قابل مقایسه با بدن آدمی – یعنی اجزایی که مجموعة واحدی را تشکیل داده اند- یعنی اجزایی که هم با یکدیگر و هم با مجموع متناسب هستند»- مراد ما از ساختمان ( مطابق فرهنگ یاد شده) چنین است: « ساختمان، یعنی انچه بنا شده است، یعنی نظم اسقرار یافته میان قسمتهای مختلف بدن یا یک شیئی»... این بوده معنای ظاهری مفهوم وسیع فرم.... لیکن چینی ها ضرب المثلی دارند که بسیار معروف است، می گویند: « باید به گوش جان شنید، و آنچه شنید دید» آقای پریستلی. می گوید: « این گفتة چستر تون بس حکیمانه است: فرق است میان مرد مشتاقی که کتابی را از سر اشتیاق می خواند با مرد خسته ای که در جستجوی کتابی است تا برای امرار وقت و مشغولیت بخواند».- خواندن کتابی، استماع آهنگی، تماشای تصویری، می باید با نهایت تمرکز قوای ذهنی و به کمک احساس و ذوق صورت بگیرد.

وقتی به استماع یک قطعه موسیقی مشغول هستید، اصواتی به گوشتان می خورد که گاه هم آهنکگ و گاه در هم به نظر می آیند و ممکن است موجب تحریک حس شادی یا غم شما بشوند: اگر به همین اکتفا کنید به کمترین حد لطافت آن قطعه پی برده اید- ولی باید گفت: ادراک لطافتی تا این حد ناقص،موسیقی شناسی نامیده نمی شود...شاید نا آشنایی یا تنبلی سبب این عدم ادراک است.... در صورتی که اگر به عکس، به دقت گوش فرا دهید تا جایی که نغمه ای از آن قطعه را به ذهن بسپارید، و همین نوا را گاه در مایة اصلی خود و گاه در مایه ای دیگر بشنوید و تغییر مایه را تشخیص بدهید و مخصوصاً در بیابیدکه خاصیت هر نوایی در هر سازی متفاوتست، و این نکات را در سراسر قطعه دنبال کنید و از هیچ چیز حتی اگر جزیی هم باشد غفلت نورزید و در ضمن این پیروی، پیوستگی نغمات را ادراک کنید و تکرار نغمه ها و مدگردیهای قطعه و تغییر و زنها و حرکات را دریابید، در این صورت اول را در راه شناختن موسیقی برداشته اید.

یک اثر ادبی نیز بسان یک قطعه موسیقی است.

نویسنده، از کلمات مدد می گیرد، کلمات را با هم ترکیب می کند تا جمله ها بوجود آیند، و جمله ها عبارات را تشکیل می دهند- با تکرا، تنوع، و بهم آمیختگی کلمات و ایجاد تحرک، نویسنده اثر خود ر اقدم به قدم جلو می برد تا به اوج برساند... و بدینوسیله نمونه ای ابداع می کند که نه تنها واجد محتوی و مضمون است بلکه به علت نبوغ و مهارت خاص نویسنده، محرک نیز هست و می تواند عکس العملی احساسی در خواننده ایجاد کند، همین مهارت است که باعث میشود مضمون، زنده و محرک گردد، زندگی و تحرکی که فقط مرهون کلمات و معنای آنها نیست.. بنابراین: نه موسیقی یک سلسله اصوات پی در پی است و نه ادبیات سیل کلمات ردیف شده می باشد......مهم در ادبیات و موسیقی ارتباط و کمال تناسب اصوات و کلمات می باشد.


بررسی الیاف سلولز در صنعت نساجی

الیاف سلولز از مهمترین الیاف مورد استفاده در صنعت نساجی می باشند که همگی از گیاهان بدست می آیند الیاف سلولز طبیعی را می توان به گروههای زیر تقسیم بندی نمود
دسته بندی نساجی
فرمت فایل doc
حجم فایل 2851 کیلو بایت
تعداد صفحات فایل 180
بررسی الیاف سلولز در صنعت نساجی

فروشنده فایل

کد کاربری 8044

1-1- مقدمه

الیاف سلولز از مهمترین الیاف مورد استفاده در صنعت نساجی می باشند که همگی از گیاهان بدست می آیند. الیاف سلولز طبیعی را می توان به گروههای زیر تقسیم بندی نمود.

الف) الیاف دانه ای: این الیاف از تخم یا دانه گیاه به دست می آیند مانند الیاف پنبه

ب) الیاف ساقه ای: این الیاف از ساقه گیاه به دست می آیند مانند الیاف کنف، کتان و چتایی.

ج) الیاف برگی: الیافی که از برگ گیاه به دست می آیند مانند الیاف سیسال و مانیلا

د) الیاف میوه ای: الیافی که از میوه گیاه به دست می آیند مانند الیاف نارگیل

الیاف پنبه:

پنبه لیفی طبیعی از نوع سلولزی، دانه ای، تک سلولی و کوتاه می باشد. دانسیته آن 52/1 است که از اینرو جزء الیاف سنگین به شمار می آید الیاف پنبه طولی ما بین
56- 10 میلیمتر و قطری در حدود 22- 11 میکرومتر دارد و رنگ آن سفید تا
قهوه ای مایل به زرد متغییر است. نمای طولی میکروسکوپی آن به صورت لوله ای تابیده و پیچ خورده است و نمای عرضی آن لوبیایی شکل می باشد. [20]

2-1- ساختمان شیمیایی سلولز

با تجزیه و تحلیل نتایج آزمایشات مختلف و شناسائی عناصر سازنده سلولز می توان آن را در دسته کربوهیدراتها قرار داد.

هیدرولیز با اسید سولفوریک 72 درصد منجر به تولید 7/90 درصد گلوکز می گردد. اگر محصول حاصل از هیدرولیز را به کمک الکل اتیلیک و اسید کلریدریک به عنوان کاتالیزور، متانولیزه نمائیم محصول حاصل 5/80% از مشتقات متیل گلوکز خواهد بود. محصول بدست آمده را با واکنش مکرر و استفاده از کاتالیزورهای دیگر می توان تا 5/95 درصد افزایش داد. نتیجه حاصل 5/95 درصد را می توان دلیل محکمی دانست که سلولز پلیمری است که از واحد های سازنده گلوکز تشکیل شده است. [16]

3-1- گلوکز

گلوکز یا پنتاهیدرواکسیدآلدئید مونوساکاریدی است که ملکول آن دارای 6 اتم کربن می باشد.

شکل 1-1- ساختمان خطی ملکولی گلوکز یا پنتاهیدراکسید آلدئید

گلوکز به دلیل دارا بودن چهار اتم کربن نا متقارن (کربن 2 و 3 و 4 و 5) در زنجیر ملکولی دارای 16 ایزومر می باشد که از این 16 ایزومر، 8 ایزومر تصویر آیینه ای 8 ایزومر دیگرند.

چون ایزومرها تصویر آیینه ای دارند ترتیب قرار گیری گروههای هیدروکسیل هیدروژن سمت چپ و راست ملکول گلوکز باعث تقسیم بندی ایزومرها به راست گرد (D) و چپ گرد (L) می شود که گلوکز سازنده سلولز از نوع راست گرد (D) می باشد. [2]

همانگونه که در شکل 1-1 نشان داده شده است پنتاهیدراکسید آلدئید دارای گروه آلدئیدی در کربن شماره 1 می باشد ولیکن کلیه آزمایشات مشخص کننده آلائیدها بر روی گلوکز به جواب منفی می انجامد که دلیل آن را می توان به واکنش گروه آلدئیدی کربن 1 با گروه هیدروکسیل 5 و تبدیل مولکول از حالت خطی به حالت حلقوی پایدار نسبت داد. [2]

شکل 2-1- تبدیل فرم خطی گلوکز به فرم حلقوی

فرم حلقوی D گلوکز حالت فضایی کشیده شده ای دارد و اتم کربن شماره 1 حلقه غیر متقارن می باشد و در نتیجه گروه های هیدروژن هیدروکسیل متصل به آن
می تواند دو حالت فضایی و را اختیار کند.

- D گلوکز مونومر سازندة نشاسته می باشد ولی - D گلوکز واحد سازنده سلولز است. این دو ایزومر از نظر خصوصیات فیزیکی و شیمیایی با یکدیگر اختلاف زیادی دارند.

4-1- پلیمریزاسیون - D گلوکز

- D گلوکز با دارا بودن پنج گروه هیدروکسیل سازندة زنجیره پلیمری سلولز است. در صورت اتصال دو ملکول - D گلوکز به یکدیگر هر ملکول، یک هیدروکسیل از دست می دهد و بین آنها پیوندی اتری برقرار می شود و یک ملکول آب آزاد
می شود.

با انجام آزمایشات مختلف مشخص گردیده که در زنجیره پلیمری سلولز پیوندی ملکولی - D گلوکز از طریق کربن شماره 1 و 4می باشد و در این صورت هر ملکول، دو گروه هیدروکسیل از دست می دهد و سه هیدروکسیل دیگر برایش باقی می ماند. پیوند حاصله را که پیوندی اتری می باشد پیوند 1 و 4 - گلوکز گلوکزیدیک می نامند.

شکل 3-1- پلیمریزاسیون گلوکز و ایجاد پیوند 1 و4 - گلوکزیدیک

همانطور که در شکل 3-1 نشان داده شده است مونومرهای - D گلوکز متصل شده در زنجیر سلولز نسبت به یکدیگر وضعیت ترانس دارند، یعنی در زاویه ْ 180 نسبت به یکدیگر قرار گرفته اند. به همین دلیل گروه CH­2OH یک در میان بالا و پایین قرار می گیرد، از این جهت کوچکترین واحد تکرار شونده در سلولز را سلوبیوز می دانند. [2]

شکل 4-1- عوامل جانبی زنجیر سلولز

همانطور که در شکل 4-1 مشخص شده است، انتهای زنجیر سلولز ملکول گلوکز شماره n قرار گرفته است، این ملکول از طریق اتم شماره 4 به اتم کربن شماره 1 ملکول گلوکز قبلی (1- n) از زنجیر سلولز متصل گردیده است.

این انتها را، سمت قابل احیاء زنجیر سلولز می نامند چون ملکول گلوکز شماره n در اثر اکسیداسیون تجزیه و به ملکول کوچکتر تبدیل می شود. ملکول گلوکز (1-n) نیز دارای همین خصوصیت است و قابل تجزیه می باشد و از این سمت خطر تجزیه کامل زنجیر سلولز وجود دارد.

بر عکس مولکول گلوکز شماره 1 از طریق کربن شماره 1 به زنجیر متصل است و قادر به واکنش نمی باشد همینطور مولکول گلوکز شماره2 تا شمارة n توسط کربن شماره 1 متصل هستند و از این سمت خطر تجزیه کامل زنجیر سلولز وجود ندارد، به همین دلیل این سمت را، سمت غیر احیائی زنجیر می دانند. [4 و 2]

گروه های جانبی سلولز گروه های هیدروکسیل می باشند. یکی از عوامل هیدروکسیل نوع اول و دوتای دیگر نوع دوم هستند. کربن شمارة 6 دارای نوع اول و کربن 2 و 3 دارای عامل الکلی نوع دوم هستند. [4]

عامل الکلی نوع اول فعالیت و واکنش پذیری بیشتری نسبت به عامل الکلی نوع دوم دارد.

5-1- پیوندهای بین زنجیرهای سلولز

پیوندهای موجود در بین زنجیرهای سلولز طبیعی پیوندهای هیدروژنی می باشد که بین عاملهای هیدروکسیل یک زنجیر با زنجیر دیگر ایجاد می شود. همچنین احتمال وجود پیوندهای واندروالس نیز در بین زنجیرهای سلولز داده شده است. [4 و 2]

به غیر از این پیوندها می توان توسط مواد شیمیایی پیوندهای دیگری را جهت تغییر خصوصیات سلولزی یا الیاف سلولزی ایجاد کرد. این پیوندهای ایجاد شده از نوع کوالانسی و بسیار محکم می باشد و خصوصیات الیاف سلولزی یا سلولز را بطور دائم تغییر می دهند.

پیوند دادن بین زنجیرها را با ترکیبات زیر می توان انجام داد. [20 و 2 و 1]

الف) پیوند دادن بوسیله فرم آلدئید

2Cell-OH + CH2O " Cell-O-CH2-O-Cell

ب) پیوند دادن بوسیله دی متیلول اوره

0

0

2Cell-OH+HOCH2NHCNHCH2OH"Cell-O-CH2HNCNHCH2-O-Cell

ج) پیوند گوگردی:

این پیوند در اثر یکسری واکنشهای پیچیده و در طی چند مرحله روی سلولز انجام
می شود.

2Cell-SH " Cell-S-S-Cell

6-1- تخریب کننده های سلولز

سلولز با دارا بودن ساختمان شیمیایی که در صفحات قبل در مورد آن بحث شد در مقابل بسیاری از ترکیبات شیمیایی و عوامل فیزیکی قابلیت تخریب و تجزیه دارد. بعضی از این عوامل تخریب کننده عبارتند از:

1-6-1- تخریب با اسیدها

تخریب سلولز در محلول های اسیدی بستگی به PH عملیات و حرارت و زمان دارد. علت تخریب شکسته شدن پیوندهای 1 و4 - گلوکوزیدیک است که با کاهش درجه پلیمریزاسیون (DP) و افزایش سیالیت محلول همراه است. محصول حاصل از عمل تخریب سلولز با اسید را هیدروسلولز می نامند. [4 و 2]

2-6-1- تخریب با مواد اکسید کننده

مواد اکسید کننده بر روی سلولز اثر کرده و اکسی سلولز را بوجود می آورند. با در نظر گرفتن زنجیر پلیمری سلولز که از واحد های - D گلوکز تشکیل یافته و هر واحد گلوکز دارای سه گروه عامل هیدروکسیل که یکی از آن نوع اول و دوتای آن از نوع دوم هستند و با در نظر گرفتن اینکه عوامل هیدروکسیل بسیار واکنش پذیر و قابل اکسید شدن هستند انتظار می رود عوامل الکلی نوع اول به آلائید و سپس به اسید و الکلهای نوع دوم به کتون تبدیل شوند. همچنین احتمال واکنش از سمت احیائی زنجیر و تولید اسید گلوکونیک نیز می باشد. [20 و 2 و 4]

3-6-1- تخریب با قلیا

بر خلاف اینکه سلولز در محلولهای رقیق اسیدی تجزیه می شود در محلولهای قایائی رقیق پایدار است. محلولهای غلیظ و داغ قلیا باعث تجزیه سلولز می شود. تجزیه از سمت احیائی زنجیر آغاز می شود و با تبدیل واحدهای گلوکز به فرکتوز و سپس به اسید ایزوساکارنیک به پیش می رود. [2]

4-6-1- تخریب با آنزیم

آنزیم ها از نظر شیمیائی پروتئین می باشند و به منظور تسریع در انجام عملیات بیولوژیکی استفاده می شوند. آنزیم ها انواع مختلفی دارند که هر یک توانائی شکستن نوعی پیوند را دارد. آنزیمی که سلولز را مورد تخریب قرار می دهد سلولاز نام دارد و با کاهش درجه پلیمرازسیون سلولز از طریق شکستن پیوند 1 ، 4 - گلوکزیدیک باعث تجزیه سلولاز به اولی گومر، مونومر و حتی آب و دی اکسید کربن می گردد. آنزیم های سلولاز بر مشتقات سلولز و سلولزی که پیوند بین زنجیری داده شده، بی اثر می باشد. [20 و 2]

5-6-1- تخریب بوسیله نور خورشید

به دلیل وجود اشعه ماوراء بنفش در نور خورشید و طول موج های کوتاهتر از نور موئی که دارای انرژی زیادی هستند، سلولز تجزیه و تخریب می گردد.

6-6-1- تخریب بوسیله حرارت

حرارت نیز اگر از مقدار معینی تجاوز کند باعث اکسیداسیون سلولز می گردد.

7-1- پنبه

اگر چه الیاف ساقه ای در نوع خود دارای ارزشی در صنعت نساجی است. ولی اهمیت آنها هرگز به پنبه نمی رسد. از خصوصیات مهم این الیاف، استحکام زیاد در پارچه، داشتن قدرت وقابلیت انعطاف در مقابل هر گونه عملیات ریسندگی و بافندگی و تمایل به جذب رنگهای متفاوت است. همین خصوصیات باعث شده است که با وجود افزایش الیاف مصنوعی، پنبه اهمیت خودش را حفظ کند و مقدار محصول و مصرف آن همواره افزایش یابد. [4]

8-1- خصوصات گیاهی

پنبه گیاهی است علفی که ارتفاع آن به 6/0 تا 2 سانتی متر می رسد. برگهایش دارای بریدگی است و گلهای سفید، زرد و یا صورتی دارد میوه پنبه کپسولی است به اندازه یک گرد و به نام غوزه پنبه (batt) که تخمها که در واقع همان تخم پنبه
(Seed Cotton) هستند درون آن قرار دارند. الیاف پنبه به صورت توده ای متراکم در سطح تخمکها رشد می کنند. گلهایی که در روی گیاه می رویند، معمولاً هر کدام بیش از 15 تخمک دارند که درون غوزه گیاه قرار دارند. غوزه پس از رشد کامل گیاه باز می شود و تخمکها و الیاف در داخل غوزه به صورت توده کرکدار در معرض هوا قرار می گیرند. هر یک از تخمکهای گیاه در حدود 20000 تا رلیف در سطح خود دارد و بنابراین هر یک از غوزه ها تقریباً حاوی 300000 تا رلیف هستند. وقتی که غوزه گیاه باز می شود رطوبت داخل الیاف تبخیر می شود و الیاف حالت استوانه بودن خود را از دست می دهد و این عمل باعث می شود که دیوارهای سلولی آن جمع شوند و حالت فرو ریختگی بیابند. در چنین حالتی، تار پنبه یک پیچش مختصر، یا نیم تاب به خود می گیرد که آن را اصطلاحاً پیچیدگی (Convolution) می نامند. [4]

9-1- اثر شرایط محیط در رشد پنبه

خصوصیات الیاف پنبه نظیر قطر آن به نوع پنبه بستگی دارد؛ ولی باید در نظر داشت که سایر شرایط از قبیل مناسب بودن زمین و همچنین شرایط جوی نظیر رطوبت زیاد و نور و آفتاب نیز در مرغوبیت آن اثر می گذارد. در یک گیاه معمولی رشد الیاف در داخل غوزه مدت یک ماه و نیم طول می کشد. ولی همه آنها در یک موقع به رشد کامل خود نمی رسند، و ممکن است بین 8 تا 9 هفته طول بکشد. از زمانی که گیاه دارای گل می شود تا زمانی که آخرین غوزه ها شروع به باز شدن می کنند. ممکن است در حدود چهار ماه طول بکشد. به هر طریقی که رشد پنبه در داخل غوزه انجام گیرد. مقداری از الیاف رشد کامل نمی کنند و مقدار الیاف رشد نکرده به به الیاف رشد کرده در داخل غوزه نشان دهنده کیفیت و بازدهی رشد نکرده به الیاف رشد کرده در داخل غوزه نشان دهنده کیفیت و بازدهی محصول است. در الیاف معمولی ممکن است در حدود یک چهارم الیاف رشد نکرده وجود داشته باشد و گاهی اوقات الیاف رشد کرده در داخل غوزه ممکن است به نود درصد برسد. [4]

10-1- ایجاد نپ (nep)

الیاف رشد نکرده ممکن است به طرق مختلفی ایجاد مشکلات کند که اهم آن بدین قرار است:

1- معمولاً بعد از خاتمه عملیات رنگرزی، الیاف رشد نکرده نسبت به الیاف رشد کرده کم رنگتر هستند و این در اثر ضخیم نبودن دیواره ها و یا عدم تکامل ساختمان لیف (پنبه نارس) است.

2- مقاومت این گونه الیاف فوق العاده کمتر از الیاف رشد کرده است و به سهولت پاره می شوند.

3- برای عملیات ریسندگی قابل استفاده نیستند و به عنوان ضایعات، دور ریخته
می شوند.

4- دارای قابلیت انعطاف هستند و به سهولت به دور الیاف دیگر می پیچند و ایجاد نپ می کنند. اگر چنین الیافی در پارچه رنگ شده وجود داشته باشند، به علت کمرنگ بودن آن، کالای رنگ شده یکنواخت به نظر نمی آید. [4]

11-1- ساختمان لیف پنبه

مولکولهای سلولز پنبه که تحت عملیات مکانیکی و شیمیایی قبلی قرار نگرفته باشد از پلیمرهای خطی که حاوی حداقل 5000 واحد انیدروگلوکز Anhydroglucose (وزن مولکول حداقل 800000) می باشند تشکیل می گردد. معمولاً در حالت جامد بشکل صفحات مسطح می باشند و در حضور آب این صفحات بطور منظم بهم چسبیده می باشند، ولی در بعضی مواقع بعضی از آنها از این حالت مسطح (form Flat) تبعیت نمی کنند و خمشهای مولکولی (Chain folding) در بعضی از الیاف سلولزی مشاهده می گردد. مولکولهای سلولز پنبه در حالت کاملاً گسترده و بموازات محور فیبریلها قرار دارند.

مطالعات بوسیله جذب نور ماوراء قرمز (Infra red) نشان می دهد که اغلب گروههای هیدروکسیل با یکدیگر پیوند هیدروژنی بر قرار می سازند ولی بطور دقیق چگونگی حالت تشکیل این پیوندهای هیدروژنی هنوز معلوم نشده است. شکل 5-1 امکان تشکیل دو نوع پیوند هیدروژنی بین مولکولی منظم را نشان می دهد.

شکل (5-1) دو نمای متفاوت از پیوندهای هیدروژنی بین مولکولی

در هر دو حالت فوق صفحات مسطح وقتی می توانند تشکیل گردند که بین گروههای هیدروکسیل و اتمهای اکسیژن در زنجیرهای مجاور پیوند هیدروژنی بیشتری برقرار گردد. پیوند بین صفحات مولکولها احتمالاً بوسیله نیروهای واندروالس حاصل
می شود.

شکل 6-1 نشان می دهد که چگونه سطوح آبدوست (Hydrophilic) واحدهای انیدروگلولز (Anhydroglucose) به نقاط استوانی (Equaterial) خود محدود شده است و سطوح مسطح بالا و پایین خاصیت غیر آبدوستی Hydrophobic دارند.

شکل (6-1) یک واحد سلوبیوز موقعیت اتمهای حلقوی را در دو سطح موازی با گروه های آبدوست و سطوح غیرآبدوست جانبی‌یا‌استوانه ای قرار دارند نشان می دهد.

اخیراً با روش سانترفیوژ تعداد 10000 واحد گلوکز که وزن مولکولی 1580000 را نشان می دهد برای سلولز پنبه ارائه شده است.

باید اضافه کرد که از پیوند مولکولهای الفا – دی – گلوکز(glucosed - ) زنجیر خطی مستقیم که قابلیت تشکیل لیف سلولزی را داشته باشند بدست نمی آید بلکه مواد سلولزی دیگری مانند نشاسته حاصل می شود. شکل 7-1 شمای یک لیف پنبه را نشان می دهد.

شکل(7-1) شمای ساختمان لیف پنبه قبل از اولین خشک شدن لیف

دیوار اولیه (Primaey Well) از پوسته ای بضخامت 1/0 با فیبریلهای متقاطع و تحت زاویه خطی نسبت به محور لیف تشکیل شده است. موقعیکه لیف متورم
می گردد توده سلولز یعنی دیواره ثانوی، که شامل S3, S2, S­1 می باشد و فیبرهای آنها زاویه 25- 20 درجه نسبت به محور لیف قرار دارند، به دیواره اولیه و مغز لیف، لومن (Lumen) فشار وارد می سازند.

دیواره ثانویه از لایه های متعددی تشکیل شده است S3, S2, S­1 ... S این لایه ها را می توان با روشهای تورمی از یکدیگر جدا کرد. دیواره ثانویه متراکمتر از دیواره اولیه بوده و دسته های فیبریلهای آن در طول لیف، جهت آرایش، زاویه فیبریلهای خود را نسبت به محور لیف عوض می کنند و این تغییر جهت در آن محل موجب تاب دار شدن (Convolutions) لیف پنبه می گردد. و تعداد این تابهای طبیعی لیف و آرایش فیبریلی آن بطور کلی بستگی به نوع لیف پنبه و قابلیت تطویل آن دارد.

ضخامت فیبریلهای موجود در سلولز در حدود nm 20 می باشد. و بعضی از این فیبریلها خودشان نیز به فیبریلهای نازکتر و بضخامت nm 5 تقسیم می شوند و از تجمع این فیبریلها یک دسته فیبریل بضخامت nm 200 حاصل می شود که می توان آنها را بوسیله میکروسکوپ نوری مشاهده کرد. این تجمع با نیروی خیلی ضعیفی بهم متصل شده اند که به راحتی از هم گسسته می گردند.

بوسیله مطالعه با اشعه ایکس معلوم شده است که 60/ 58 درصد از گروههای هیدروکسیل پنبه دارای پیوندهای هیدروژنی منظم (ordered) و 40% بقیه غیر منظم (disordered) می باشند. شکل 8-1 نمای مناطق بلوری و بی شکل در لیف پنبه را نشان می دهد [7].

شکل (8-1) نمایش دیاگرامی مناطق بلوری و بی شکل

12-1- شکل سطح مقطع و شکل طولی لیف پنبه

شکل 9-1 سطح مقطع تصویر طولی لیف پنبه را در زیر میکروسکوپ نوری نشان
می دهد.

بطوریکه ملاحظه می شود مقطع تصویر طولی لیف تابهای آن (Convolution) مشاهده می شوند و سطح مقطع لیف حالت لوبیائی شکل دارد و مغز لیف یا لومن (Lumen) بصورت خط دیده می شود.

طول متوسط الیاف طبیعی پنبه حدود 14- 36 میلیمتر و قطر آن 15- 20 میکرون
می باشد مقاومت لیف حدود 3 – 6 گرم بر دنیر و تطویل آن تا حد پارگی
5- 7 درصد است.

شکل (9-1) تصویر مقطع عرضی و طولی الیاف پنبه

پنبه در شرایط استاندارد (22 درجه سانتیگراد و 76 درصد رطوبت نسبی) مقدار
8 درصد رطوبت بخود جذب می کند. [7]

13-1- مشخصات قسمتهای مختلف ساختمان تار پنبه ( مقطع عرضی )

1 -13-1- لایه (Cuticle)

این لایه خارجی ترین قشر لیف پنبه است سلولهای این قسمت به یکدیگر بسیار نزدیک هستند و به مقدار زیادی از اثرات زیان بخش عوامل خارجی و نفوذ آب به داخل لیف جلوگیری می کنند. یکی دیگر از خواص مهم این لایه ، جلوگیری از عمل اکسیداسیون در مجاورت اکسیژن هوا و اشعه ماوراء بنفش موجود در تابش شدید آفتاب است .ساختمان این لایه به درستی معلوم نیست ، اما تا آنجا که تحقیق شده است مواد شمعی (Wax) و پکتین در آن وجود دارد این واکس درواقع مخلوطی از چند واکس و چربی و انواع رزینهاست . اگرچه لایة کوتیکل در حین رشد لیف تشکیل می شود و لایه اولیه لیف رامانند قالبی در بر میگیرد ولی جزئی از آن به شمار نمی رود در حین مراحل رشد طولی لیف ، این لایه مانند قشری از چربی به نظر
می رسد و هنگامی که لایه دوم شروع به رشدو تشکیل شدن می کند، این قشر سخت می شود و حالت لعاب پیدا میکند. [4]

2-13-1- لایه اولیه (Primary wall)

در اولین مراحل رشد لایه لیف پنبه ، لایه اولیه شامل هسته و پروتوپلاسم است و این دو ماده هستند که اجزای اساسی و شالوده زندگی هر سلول زنده ای را تشکیل
می دهند اگر لایه اولیه راتقریباً «تماماً» از سلولز تشکیل شده است در یک حلال سلولز (هیدروکسید کوپرآمونیوم)‌ حل کنیم، فقط لایة کوتیکل باقی می ماند ضخامت لایه اولیه فقط 1/0 تا 2/0 میکرون است ، درحالی که ضخامت متوسط لیف در حدود 20 میکرون است مواد سلولزی که در این لایه است از اولین مراحل رشد لیف تشکیل
می شوند و مطالعات میکروسکوپی در مراحل مختلف رشد لیف نشان می دهد که این لایه حاوی لیفچه هایی است که در سطح خارجی لایة موازی با محور لیف ودر قسمتهای داخلی ، در جهت عرضی با محور لیف قرار گرفته اند. در فاصله این دو ناحیه فیبریلهای میانی ، تقریباً با زاویه 70 درجه نسبت به محور لیف قرار گرفته اند بدیهی است اگر این تمایل درجهت چپ باشد پیچش لیف در جهت چپ( s) است و اگر در جهت راست باشد شکل (Z) خواهد داشت.

این نحوه قرار گرفتن لیفچه ها سبب می شود که قدرت لیف در جهت طولی کمتر از جهت عرضی باشد و به همین دلیل است که قدرت و استحکام زیاد لیف در جهت پیرامون آن از تورم بعدی لیف به مقدار قابل توجهی می کاهد و قدرت لیف در جهت طولی ممکن است در اثر الیاف نارس باشد که استحکام کشش آنها کمتر از الیاف رسیده است . اگرچه لایه اولیه را کلاَ سلولز تشکیل می دهد ولی ناخالصیهای این لایه مواد پکتین و چربیها هستند. [4]

3-13-1- لایه دوم (Secondary wall)

این لایه که تقریباً‌90% وزن کل لیف را تشکیل میدهد در مرحله دوم رشد لیف به وجود می آید این دیواره از رسوب طبقات متوالی لایه های سلولز در داخل لیف تشکیل می شود بدون اینکه قطر لیف افزایش یابد. اگر در این مرحله از رشد مقطع عرضی، لیف را بررسی کنیم متوجه حلقه های مزبور که نمایشگر رشد روزانه و تکامل این لایه است می شویم مرحله تشکیل ابعاد و شکل حلقه ها بستگی زیادی به درجه حرارت و نور در مراحل رشد دارد .

چنانچه گیاه در شرایط ثابت قرارا گیرد یا اینکه یکی از عوامل موثر وجود نداشته باشد امکان دارد که این لایه در لیف تشکیل نشود یا حداقل ناقص باشد وجود این لایه در استحکام کشش لیف اهمیت زیادی دارد .

مطالعاتی که درمورد لایة‌دوم انجام گرفته است نشان می دهد که شبکه فیبریلها از لیفچه های بلند وبسیار نازک تشکیل شده است که احتمالاً در یک لیف متورم و یا خرد شده دیده می شود اما ابعاد این لیفچه ها بر حسب نوع نمونه لیف بسیار متغیر است ولی معدل قطر آنها بین 4 . 1- 1 . 0 میکرون تغییر می کند .[4]

4-13-1- کانال لومن (Lumen)

کانال لومن لوله ای است که در داخل لیف و در سرتاسر طول آن ، از ریشه لیف تانوک آن ، ادامه دارد. قطر فضای لومن در طول لیف متغیر است هنگامی که لیف در حال رشد کردن است و هنوز غوزه پنبه باز نشده است سطح مقطع لومن تقریباً یک سوم سطح مقطع لیف را تشکیل می دهد هنگامی که غوزه می رسد و لیف خشک
می شود این قسمت به کمتر از پنج صدم می رسد و به شکل شکاف باریکی دیده
می شود هنگامی که لیف در حال رشد است فضای لومن حاوی پروتوپلاسم است که سبب ایجاد رشد ونمو سلولها ست ولی پس از خشک شدن لیف مقداری پروتوپلاسم خشک از لیف باقی می ماند در داخل لومن مقداری مواد پروتئین ، مواد معدنی و مقداری پکمنتهای رنگی وجود دارد که سبب رنگ کرم پنبه اهلی می شود. [4]

14-1-مواد تشکیل دهنده الیاف سلولزی ( پنبه )

صرفنظر از سلولز که تقریباً 94-88% از وزن الیاف پنبه را تشکیل می دهد مواد دیگری نظیر پکتین ، واکس ،پروتئین و مواد کانی در این لیف وجود دارد که در جدول زیر مقادیر تقریبی آنها را برای دو نمونه پنبه آورده شده است :

جدول 1-1 مواد شیمیایی تشکیل دهنده پنبه

مواد تشکیل دهنده

(‌درصد وزن خشک) در یک نمونه پنبه ناشناخته

(درصد وزن خشک )‌در یک نمونه پنبه امپایر

سلولز

93/94

30/95

پروتئین

2/1

00/1

خاکستر

(16/1)67/0

(86/0)50/0

واکس

75/0

75/0

اسید پکتیک

78/0

99/0

اسید مالئیک

48/0

19/0

اسید سیتریک

06/0

04/0

سایر اسیدهای آلی

32/0

32/0

قندها

15/0

10/0

سایر مواد

83/0

81/0

جمع

00/100

00/100

در مورد ماده تشکیل دهنده سلولز قبلاً مطالبی ذکر شده است اینک سایر مواد را مورد بحث قرار می دهیم .

1-14-1- واکس

واکس یا موم موادی است که به وسیله تقطیر سلولز با حلالهای آلی نظیر تتراکلرور کربن و یا بنزن به دست می آید وبعد از سلولز مهمترین ماده ای است که در لیف سلولزی موجود است مقدار واکس در انواع مختلف پنبه متفاوت و حدود 4/0 تا 8/0 درصد است .

تصور می شود که قسمت اعظم واکس در لایه اولیه لیف نهفته است .

واکس صرفنظر از نرمشی که به سطح لیف می دهد و سبب تسهیل عملیات ریسندگی می شود از اصطکاک بین الیاف می کاهد و نتیجتاً از قدرت کشش بین الیاف نیز کاسته می شود. آزمایشاتی که در این مورد به عمل آمده است نشان می دهد قدرت نخی که از الیاف موم گرفته(‌به وسیله حلالهای آلی ) تهیه می شود حدود 5/2% بیشتر از نخ مشابهی است که از الیاف موم نگرفته تهیه شده است.

از دیگر خواص واکس جلوگیری از نفوذ آب به لیف است کما اینکه لیف پنبه خام مدت چند روز در سطح آب شناور می ماند ولی پنبه ای که در محلول رقیق سودکستیک جوشانیده شده یا سوکسله شده توسط حلالهای آلی پس از چند دقیقه خیس و غوطه ور می شود مطالعاتی که روی ترکیب شیمیایی واکس صورت گرفته است نشان می دهد که الکلها و اسیدهای بزرگ و ترکیبات آلی دیگری در واکس وجود دارند .

2-14-1- پکتین ومواد وابسته به آن

مقدار پکتین در پنبه رسیده متغیر و حدود 6/0 تا 0/1 درصد است و مقادیر آن بستگی به شرایط و نحوه استخراج دارد در یک آزمایش توسط اگزالات آمونیوم وپکتات کلسیم رسوبی برابر 7/0 درصد به دست آمده ودر آزمایشات با روشهای دیگری تا 2/1 درصد تعیین می شوند و بیشتر مقدار پکتین در لایه اولیه لیف قرار گرفته است با مطالعاتی که توسط میرومارک انجام شده است اسید پکتیک را پلیمر خطی یا ساختمان حلقه های پیرانوز که در ناحیه کربن شماره 4.1 به هم متصل هستند معرفی کرده اند.

حدس زده می شود که پکتین مانند ماده سیمانی زنجیرهای سلولز را به یکدیگر متصل می کند ولی هنوز دلیل قاطعی برای این فرضیه چه از طریق آزمایش و چه از نظر تئوری آورده نشده است.

تمام مقدار پکتین موجود در لیف با جوشانیدن لیف در محلول یک درصد سود به مدت یک ساعت خارج می کنند در صورتی که از طریق حلالیت در آب به خودی خود خارج می شود پکتین که بدین طریق از لیف خارج می شود در محیط اسیدی
ته نشین می شود و قهوه ای رنگ و موم و مواد پروتئینی همراه آن است باید گفت که با خارج کردن پکتین از لیف حلالیت لیف در محلول کوپرآمونیوم و قدرت کشش آن تغییر قابل ملاحظه‌ای نمی کند .[4]

3-14-1- خاکستر و مواد متشکله آن

در یک نمونه پنبه 2/1 درصد خاکستر وجود داشت که از آنالیز کردن آن مقادیر زیر برای محتویات آن نتیجه شده است :

5%

Sio2

34%

K2O

4%

So3

11%

CaO

5%

P2O5

6%

Mgo

4%

C1

7%

Na2O

20%

Co2

2%

Fe2O3

مقدار بسیار کم

Zn,B,Mn,Cu

2%

Al2O3

تغییرات زیادی در مقدار خاکستر و درصد مواد موجود در آن ، در نمونه های مختلف پنبه مشاهده می شود و دلیل آن نحوه کشت و برداشت پنبه و چگونگی آزمایش است.

خاکستر پنبه به شدت قلیایی است به طوری که یک گرم آن 13 تا 16 سانتیمتر مکعب اسید کلریدریک نرمال را خنثی می کند در اثر شستشوی الیاف حدود 85% خاکستر آن بخصوص نمکهای سدیم و پتاسیم آن جدا می شود ولی عناصری نظیر کلسیم، آهن و آلومینیوم باقی می ماند. باید گفت که شستشوی الیاف پنبه باعث جدا شدن مواد تشکیل دهنده خاکستر، بخصوص نمکهای سدیم و پتاسیم آن می شود و مقاومت الکتریکی پنبه را افزایش می دهد به طوری که می تواند برای عایق بندی سیمهای الکتریکی و کابلها به جای ابریشم به کار رود. [4]

4-14-1- اسیدهای آلی

خاصیت شدید قلیایی خاکستر پنبه، دلیل بر وجود نمکهای اسیدهای آلی در پنبه است. در پنبه حدود 8/0% اسیدهای آلی دیده می شود که به استثنای اسیدپکتیک باید اسیدمالئیک و اسیدسیتریک را نام برد و هر دوی این اسیدها به صورت کریستان، با رسوب از پنبه خام جدا می شوند. مقدار این اسیدها در اثر بارندگی، یا در اثر مجاورت لیف با هوا کاهش می یابد و علت آن را می توان در تجزیه این اسیدها در اثر رشد میکرو ارگانیسم (ذرات میکروسکوپی آلی) ها روی لیف پنبه دانست. [4]

5-14-1- پیگمنتها

ماهیت طبیعی پیگمنتهای پنبه هنوز بدرستی مشخص نشده است ولی رنگ کرم (و یا دانه های کرم رنگ) خفیف پنبه را در اثر وجود پیگمنتها می دانند به عقیده اپارین و رگوین این رنگ ؛ بستگی به خواص ژنتیکی الیاف دارد و مربوط به اسید کلروژنتیک است و احتمالاً ممکن است این رنگ در اثر بعضی پیگمنتها گلهای پنبه باشد که در لیف باقی می ماند الیاف پنبه که مدت 2 یا 5 سال انبار می شود رنگشان افزایش
می یابد رنگین ترین پنبه ای که تاکنون دیده شده اند به رنگهای قهوه ای و سبز بوده اند سایر ترکیبات موجود در پنبه نظیر ویتامینها ، پروتئینها و ترکیبات فسفر ، هریک مقادیر بسیار کمی را در پنبه تشکیل می دهند .[4]

6-14-1- ویتامینها

تحقیقات به عمل آمده نشان داده اند که ویتامینهایی نظیر بایوتین، پیرودوکسین ویتامین در پنبه وجود دارند. ضمناً مقدار 28/0 گرم اسید فولیک در هر گرم پنبه خام نیز وجود دارد. [4]

7-14-1- ترکیبات فسفردار

گیک ضمن آزمایشاتی که روی نژادهای مختلف پنبه به عمل آورده است متوسط مقدار P2O5 را به قرار زیر گزارش کرده است :‌پنبه آمریکایی 5% ، سی آیلند 7%، مصری 9%، و آمریکای جنوبی 7% این مقادیر بر حسب درصد نسبت به وزن خشک پنبه است .[4]

15-1- طبقه بندی گیاهی پنبه

طبقه بندی گیاهی مختلفی برای پنبه وجود دارد ولی متداولترین آنها پنبه را به دو نوع آسیایی و آمریکایی تقسیم می کند که اصطلاحاً پنبه آسیایی را پنبه دنیای قدیم و آمریکایی را پنبه دنیای جدید می گویند . اما به هرحال انواع وحشی گیاه پنبه که در تمام قاره ها وجود داشته است اجداد حقیقی پنبه های امروزی هستند که با تربیت و اصلاح نژاد و پرورش در محلهای مناسب در طول تاریخ به مرحله کنونی رسیده اند و به طور کلی انواع پنبه ای که در نساجی به کار می روند از دو گروه زیر هستند :

1- پنبه آسیایی ، این پنبه در نواحی هندوستان ، پاکستان ، آفریقا و اغلب کشورهای آسیایی و منجمله پنبه بومی ایران است که در ناحیه خراسان و کرمان کشت می شوند ارتفاع بوته های این گیاه 8/0 ، 5/1 متر می رسد و طول الیافش در حدود 24-15 میلیمتر است الیاف تقریباً خشن هستند از انواع نژاد این پنبه دو نوع گوسیپیوم هر باسیوم و گوسیپیوم ریموندی است و نژاد دیگری از پنبه آسیایی به نام گوسپیوم نانکینگ است که در هندو چین ( سیام –لائوس) هندوستان کشت می شوند .

2- پنبه آمریکایی ، این نوع پنبه که بیشتر از هر نوع پنبه ای در دنیا کشت می شود
از نژاد کوسپیوم هیرسوتوم است و کلیه پنبه های معروف آپلند که در اکثر نقاط دنیا کشت می شود جزو این خانواده به شمار می آید ارتفاع این گیاه به 2/1-9/0 متر
می رسد و طول الیافش در حدود 35-22 میلیمتر است الیافش لطافت متوسطی دارند در ایران این پنبه در اکثر نقاط کشور کشت می شود

نوع دیگری از پنبه آمریکایی از نژاد گوسیپیوم باربادنز وجود دارد که دارای ارزش تجارتی است و پنبه های مرغوب مصری و پنبه های سی آیلند از این نوع هستند باید یادآوری کرد که تعداد دیگری نژادهای پنبه آسیایی و آمریکایی وجود دارند که ذکر کلیه آنها در اینجا ممکن نیست و مختصراً میتوان نژاد برزیل و پرووسیام را نام برد. [4]

16-1- طبقه بندی های تجارتی پنبه

پنبه های تجارتی از نظر کیفیت به سه گروه تقسیم می شوند:

1- الیافی که طول آنها بین 6-5/2 سانتیمتر است قطر آنها بین 15-10 میکرون تغییر می‌کند ومعادل 66/1-99/0 دنیر هستند این گروه الیاف شامل الیاف نازک و شفاف و تقریباً می توان گفت که از بهترین نوع پنبه هستند. این نوع پنبه معمولاً‌در جزایر آمریکای مرکزی مصر و سودان کشت می شود تهیه وتربیت این نوع پنبه کار ساده ای نیست و در دنیا مقدار زیادی از آن به عمل نمی آید و تولید آن محدود است.

2- الیافی که طول آنها 5/3- 2/1 سانتیمتر است قطر آنها بین 17-12 میکرون تغییر می کند و معادل 98/1 -26/1 دنیر هستند این نوع پنبه معمولاً در ایالات متحده آمریکا و در بعضی از نقاط کشور پرو در آمریکای لاتین کشت می شود .

3- الیافی که طول آنها 5/3- 2/1 سانتیمتر است قطر آنها بین 17-12 میکرون تغییر
می کند و معادل 98/1 -26/1 دنیر هستند این نوع پنبه معمولاً در ایالات متحده آمریکا و در بعضی از نقاط کشور پرو در آمریکای لاتین کشت می شود .


بررسی ضخامت کرکهای مفید

روش تعیین کننده ضخامت کرک های مفید در منسوجات فرشی می باشد یعنی حداکثر بلندی کرک ها یا فرهای درجه در کف پوش در این پرونده موجود می باشد این نشان دهنده فرشهای نساجی شده، بافتنی، بافته شده، ماشینی، پارچه ای است، به طوری که از قانون NFG 35000 پیروی می کنند
دسته بندی نساجی
فرمت فایل doc
حجم فایل 31 کیلو بایت
تعداد صفحات فایل 51
بررسی ضخامت کرکهای مفید

فروشنده فایل

کد کاربری 8044

منسوجات

ضخامت کرکهای مفید

بدون محدودیت زمانی استفاده قبل از پیشنهاد

مدرک حاضر منطبق با مدرنترین روش RNUR شماره 1296 می باشد.

بهیچ وجه نباید بدون پیروی از RNUR از آن استفاده نمود.

1- موضوع و زمینه استفاده:

روش تعیین کننده ضخامت کرک های مفید در منسوجات فرشی می باشد یعنی حداکثر بلندی کرک ها یا فرهای درجه در کف پوش در این پرونده موجود می باشد. این نشان دهنده فرشهای نساجی شده، بافتنی، بافته شده، ماشینی، پارچه ای است، به طوری که از قانون NFG 35-000 پیروی می کنند.

2- اصول

یک ورقه متالیک را بین منسوجات کرکی (کرک، بوکل، پارچه، پارچه کتانی) بگذارید و مقایسه کنید حد برش بالاترین قسمت از کرک را.

3- دستگاه

1-3- گنجایش کف پرش (فرش)

بوسیله یک سری از برش به ضخامت 8/0 میلی متر و در ازای 50 میلی متر بسازید در این صورت کف پوش (فرش) به ابعاد زیر می باشد:

9/2 میلی متر شماره 17

9/3 میلی متر شماره 18

9/3 میلی متر شماره 19

4/4 میلی متر شماره 20

4/4 میلی متر شماره 21

9/4 میلی متر شماره 22

4/5 میلی متر شماره 23

4/6 میلی متر شماره 24

5/7 میلی متر شماره 25

6/7 میلی متر شماره 26

2/8 میلی متر شماره 27

8/8 میلی متر شماره 28

در فرشهای کرک اصلاح شده (کوتاه شده) ابعاد زیر را داریم:

0/2 میلی متر

5/2 میلی متر

0/3 میلی متر

5/3 میلی متر

0/4 میلی متر

5/4 میلی متر

2-3- شرایط محافظتی

درجه حرارت o20 سانتی گراد 1 درجه

درجه رطوبت مربوطه 65% 2%

مدل آزمایش:

- قرار دهید فرش نساجی شده را در ظرف محافظ شرایط (2-3) بمدت کمتر از 24 ساعت

- یک ورقه به درازا ؟؟؟ زیاد بین فرش مزبور قرار دهید.

- اندازه را در یک شرایط که فقدان چیزی را در بر ندارد قرار دهید ؟؟ روی سطح تعدادی از فرشها خواه روی یک قسمت بریده شده از قالی

- قرار دهید تیغه را در بین کرکها:

- بین دو ردیف کرک، یا جنس پارچه یا بافتنی (درجه که هست)

- بین دو ردیف کرک، یا جنس پارچه بریده شده

- بین دو قسمت دراج یک فرش پارچه ای

تفاوت در موارد فرش پارچه ای

- بر روی یک قطعه برش فرش فشار بیاورید و حرکت طولی آن را مشاهده فرمائید (رفت- برگشت) در زمان پائین أوردن دست. برش را در موقعیت یک دست نگاهدارید.

- به طور آهسته انگشت دست را روی فرش بمالید و اثر أن را در برش ببینید. اگر در این لمس کردن برش کرکهای را ظاهر کرد دوباره آزمایش با انگشت بلافاصله تکرار کنید.

- دنبال کنید آزمایش را کم کم بصورت گسترده تا جایی که احساس کنید برش تمام می شود.

- یادداشت کنید عرض آخرین آزمایش را که بلندی و ارتفاع کرک را نشان می دهند.

- دوباره آزمایش را در جهت های مختلف تکرار کنید.

5- اصطلاحات نتایج

ضخامت کرک های مفید قالی نساجی شده متوسط 5 کرک روی قطعه را نشان می دهد.

6- صورت جلسه آزمایش

صورت جلسه آزمایش نشان می دهد:

- رجوع به قالی های آزمایش شده

- ضخامت حد متوسط قالی نساجی شده

- شرایط بخصوص آزمایش

7- تاریخچه و مدارک موجود

1-7- تاریخچه

1-1-7- تولیدات

در تاریخ 1/11/1981 تولید با قاعده و فرمول

2-1-7- موارد استفاده:

1-2-7- مدارک PSA

1-1-2-7- قواعد

2-1-2-7- دیگر چیزها (موارد دیگر)

2-2-7- مدارک خارجی

3-7- موازنه A

REN 1206

4-7- تائید A

5-7- کلمه های کلیدی

فهرست

1- موضوع و زمینه کاربرد

2- نحوه اشاره به مدارک

3- دستورالعملهای کلی

4- طراحی

5- شکل ظاهری

6- مشخصات الزامی

1-6- مشخصات فنی کلی

2-6- مشخصات فنی خاص

ضمیمه 1- تعریف نواحی برداشت نمونه های آزمایشی

ضمیمه (2/1)2- مشخصات فنی کلی کفپوش

ضمیمه (2/2)2- مشخصات فنی خاص کفپوش

ضمیمه 3- موکت بافته شده (نوع TUFTED)- کفپوش بافته شده (نوع TUFTED)

ضمیمه 4- کلاس های صوتی

7- تاریخچه و مدارک مورد استناد

1-7- تاریخچه

2-7- مدارک مورد استناد

3-7- معادل با استاندارد

4-7- مطابق با استاندارد

5-7- کلمات کلیدی

1- موضوع و زمینه کاربرد

استاندارد حاضر در مورد دستورالعمل ها و الزامهایی است که تمام کفپوشهای دارای شکل پذیری حرارتی به کار رفته در کف خودروها باید با آنها مطابقت داشته باشند.

این استاندارد دستورالعمل های ویژه شرکتهای خودرو گروه، دستورالعملهای مربوط به کفپوشها (با شکل پذیری حرارتی) را در کشورهایی که خودروها به بازار عرضه شده اند، کامل می کند.

این استاندارد در مورد روکش کفپوشها به کار نمی رود.

2- نحوه اشاره به مدارک

محصولات مرکب (کفپوش+ مواد حفره دار) در کلاس های کارایی مشخص شده X توسط خط مستقیمی با شیب 12Db در اوکتا و به میزان XdB در 1000HZ، فهرست بندی می شوند.

- نامگذاری ماده.

- کد دانه بندی.

- مرجع مدرک مربوطه به شکل ظاهری (FTM یا SPA) در صورت وجود (به بند 5- شکل ظاهری مراجعه کنید).

- کلاس یا کلاسهای کارایی صوتی در مورد کفپوش مرکب دارای لایه پشتی جذب صدا (حالت 8، 1 و 4) در موارد 1 و 4، کلاس صوتی، همان کلاس صوتی کفپوش با لایه پشتی جذب صدا است که به لایه الاستیکی و (حالت 1) ، به سنگینی (حالت 4) افزوده شده است.

- مرجع استاندارد حاضر.

مثال ها: کفپوش بافته شده F330 با کلاس 16B297100 (حالت 4,3,1,)

- کفپوش بافته شده F330 B29 7100 (حالت 2)

3- دستورالعملهای کلی

همان دستورالعملهای استاندارد B20 01 10 هستند به استثنا فصل بعد که به صورت زیر کامل شده است:

- تایید تولیدات

تائید کفپوش بر اساس کفپوش شکل دهی حرارتی شده و مواد تشکیل دهنده أن (مثال: موکت، کفپوش طرف راننده، لایه سنگین وزن و غیره) انجام می گیرد. بعلاوه، در مورد کفپوش مرکب دارای ماده اسفنجی، وجود یک نمونه تخت به ابعاد 700mm×700mm با ضخامت ماده اسفنجی الزامی است.

بدون توافق سرویسهای فنی مربوط به گروه هیچ تغییری در هیچ یک از مواد، نباید صورت گیرد.

هر تغییری در مواد لزوماً مستلزم یک تایید جدید است.

همه کفپوشهایی که مورد تایید قرار می گیرند باید به همراه یک گزارش آزمایش از سازنده باشند که تمام نتایج مربوطه به آزمایشات توصیه شده در استاندارد ویژه کفپوش را ارائه می دهد. بسته بندی و تحویل باید مطابق دستورالعملهای استانداردهای متداول باشد.

- علامتگذاری تاریخ ساخت باید مطابق استاندارد B11 8030 صورت گیرد.

- علامتگذاری قطعه در حال بازیافت باید مطابق استاندارد B20 1315 صورت گیرد.

4- طراحی

کفپوشهای شکل دهی حرارتی شده استاندارد حاضر بوسیله عمل شکل دهی حرارتی موکتهایی که از لایه های مشروح ذیل تشکیل شده است ساخته می شوند. (cf- استاندارد ISO 2424):

- یک لایه پشتی سبک (پلی اتیلن و غیره)، یا لایه سنگین وزن (EPDM پر و غیره) که باعث حفظ شکل می شود. ممکن است کفپوش با یک ماده اسفنجی ترکیب شده باشد (مواد حفره دار، نمد) که به عایق بندی صوتی خودرو نیز کمک می کند. مجموعه ای که بدین ترتیب ساخته شده کاربردهای تزئینی کف و عایق صوتی را تضمین می کند. در مورد کاربرد اخیر، ماده اسفنجی نقش لایه الاستیکی را ایفا می کند.

- موکت راننده که دارای الزامات استاندارد B65 6210 می باشد.

شکل ظاهری این موکت ممکن است به صورتهای زیر باشد:

- بافته شده (سوزن دوزی شده) به این معنی که از سوزندوزی مواد بافته شده بهم پیوسته با روش های فیزیکی و/ یا شیمیایی بدست آید. شکل ظاهری ممکن است صاف، حلقوی مسطح یا DILOURE باشد. بنابراین پوشش بافته شده با روکش شدن به پشت موکت ثابت می شود.

- بافته شده باشد (نوع TUFTED) یعنی با وارد کردن رشته های مخمل در پارچه ای که از قبل ساخته شده و پس از أن ثابت کردن آنها توسط روکش کردن، به ضمیمه 3 مراجعه کنید.

- یا هر طرح دیگری که اجازه رسیدن به شکل ظاهری درخواستی را بدهد. تجهیزات جانبی که به همراه کفپوش تحویل می شوند (دستگاه تهویه، جاپایی) در SPA (به بند 5 مراجعه کنید- مشخصات الزامی) مشخص شده اند.

توجه: کفپوشهای مرکب دارای شکل دهی حرارتی که از مواد مختلف ساخته شده اند، نباید بوهایی ایجاد کنندکه برای استفاده کنندگان نامطبوع باشد و همچنین نباید حاوی محصولات سمی یا آسیب رساننده به پوست باشند. در حین مونتاژ یا در دست گرفتن، مواد نباید آسیب ببینند.

5- شکل ظاهری

شکل ظاهری باید مطابق با معیارهای شرح داده شده توسط سرویسهای مربوط به گروه باشد.

در صورتیکه پس از عملیات شکل دهی حرارتی روی قطعات اختلافهای احتمالی نسبت به مراجع مورد نظر مشاهده شود، سرویسهای تحقیقاتی لزوماً باید قطعات را تایید کرده و این قطعات باید به عنوان قطعات مرجع توسط سرویس های کیف واحدهای مختلف تولید و تجهیزات گروه نگهداری شوند.

در تمام موارد، می توان یک FTM (برگه فنی مواد) یا یک SPA (استاندارد محصول تایید شده) تهیه کرد که دارای مشخصات فنی کلی و مشخصات فنی خاص شکل ظاهری (قبل از شکل دهی) باشد.

6- مشخصات الزامی

کلیه مشخصات الزامی مربوط به کفپوش دارای شکل دهی حرارتی مورد نظر، فقط در یک مدرک تشریحی که شامل موارد زیر است، گردآوری شده اند:

- جدول A- مشخصات فنی کلی کفپوش (به ضمیمه 2 مراجعه کنید).

- جدول B- مشخصات فنی خاص کفپوش (به ضمیمه 2 مراجعه کنید).

- این مشخصات خاص مطابق استاندارد B20 0150 موضوع SPA خواهند بود.

کنترل مشخصات، روی نمونه های آزمایشی برداشته شده از نواحی مختلف کفپوش صورت می گیرد. نواحی نموه برداری در ضمیمه A

مشخص شده و باید در نظر گرفته شوند. در مواردی که برداشت نمونه ها از این نواحی ممکن نیست، نواحی برداشت جدید دیگری باید در نقشه فانکشنال مشخص شوند.

1-6- مشخصات فنی کلی

الزامها در جدول A از ضمیمه 2 خلاصه شده اند و هر یک از آزمایشها در زیر و به همراه دستورالعمل های مربوط به راه اندازی آن در زمان مقتضی در نظر گرفته خواهد شد.

1-1-6- قابلیت اشتعال در وضعیت افقی

- مطابق روش D45 1333

آزمایش قابل انجام با مواد اسفنجی در صورت جدا بودن از کفپوش.

نمونه برداری از تمام نقاط کفپوش مثل موکت راننده یا نواحی مشخص شده در نقشه فانکشنال ممکن است.

2-1-6- کهنگی آب و هوایی

- مطابق روش D45 1309

4 سیکل AF (با دمای بسیار بالای ورقه، مثال: مجرا، سیکل های BF را انجام دهید).

آزمایش روی یک قطعه کامل و / یا یک نمونه آزمایشی برداشته شده از مجموعه انجام می شود. در پایان آزمایش نباید هیچ گونه گسستگی یا تغییر شکل مشاهده شود.

3-1-6- سایش BTW

- مطابق روش D44 1237

آزمایش قابل انجام بدون مواد اسفنجی.

آزمایش به مدت 300 000 سیکل با حداکثر سرعت انجام شده و درجه گذاری برحسب شکل ظاهری کروی و میزان سایش صورت می گیرد. پس از آزمایش، منیبرهای آزاد را وزن می کنیم.

4-1-6- قابلیت تبخیر مواد پلاستیکی فقط روی یک سطح

- مطابق روش D45 1007

آزمایش قابل انجام بدون ماده اسفنجی.

آزمایش به مدت 24 ساعت در دمای 100oC روی مواد زیر انجام می شود:

- یک نمونه آزمایشی برداشته شده از ناحیه شماره 2 و / یا از ناحیه شماره 1 کفپوش.

- یک نمونه آزمایشی برداشته شده از موکت راننده.

اتلاف وزن را بر حسب g/m2 اندازه گیری کرده و این نمونه های آزمایشی را که پس از آن برای آزمایش 7-1-6 مورد استفاده قرار می گیرند، مطابق روش D42 1235 نگهداری کنید.

5-1-6- سوراخکاری

- مطابق روش D47 1097

آزمایش قابل انجام بدون ماده اسفنجی

آزمایش روی نمونه های آزمایشی برداشته شده از ناحیه شماره 1 و ناحیه موکت راننده، انجام می شود.

6-1-6- مقاومت در برابر برش جوش ها

- مطابق روش D41 1033

آزمایش قابل انجام روی ماده اسفنجی.

آزمایشها روی نمونه های آزمایشی انتخاب شده از اطراف موکت راننده، (مطابق شکل 2 از ضمیمه 1) که فاقد جوشهای تزئینی اثر گذار بر نتایج هستند، صورت می گیرند. در تمام موارد، عرض جوش آزمایشی را مشخص کنید. این آزمایشها قبل و پس از 4 سیکل کهنگی نوع AF مطابق روش D47 1309 صورت می گیرند.


بررسی سابقه صنعت نساجی در ایران

سابقه صنعت نساجی در ایران به قرن ها قبل از اسلام برمی گردد، شهرت پارچه های گلگون عهده هخامنشی و زرد وزیهای این دوره را تاریخ نویسان یونانی ضبط کرده اند در دوره ساسانیان و نیز بعد از اسلام در بسیاری از شهرهای ایران کار ریسندگی و بافندگی پارچه های ابریشمی و پنبه ای و حریر رونق داشته و در آن ها انواع منسوجات بافته شده است که قسمتی از این منسوجات جن
دسته بندی نساجی
فرمت فایل doc
حجم فایل 2016 کیلو بایت
تعداد صفحات فایل 265
بررسی سابقه صنعت نساجی در ایران

فروشنده فایل

کد کاربری 8044

مقدمه

سابقه صنعت نساجی در ایران به قرن ها قبل از اسلام برمی گردد، شهرت پارچه های گلگون عهده هخامنشی و زرد وزیهای این دوره را تاریخ نویسان یونانی ضبط
کرده اند. در دوره ساسانیان و نیز بعد از اسلام در بسیاری از شهرهای ایران کار ریسندگی و بافندگی پارچه های ابریشمی و پنبه ای و حریر رونق داشته و در آن ها انواع منسوجات بافته شده است که قسمتی از این منسوجات جنبه صادراتی داشته است. مثل ابریشم و پارچه های زری مخمل و شال های پشمی.

در دوره صفویه صنعت نساجی در ایران رونق فراوان گرفت و پس از یک دوره رکود در قرن دوازدهم هجری این صنعت مجدداً در قرن سیزدهم نضج گرفت. در دوره امیرکبیر برای ایجاد کارخانه های ریسندگی و بافندگی جدید فعالیت های اساسی انجام یافت به طوری که در کارشان کارخانه حریربافی و در تهران و قم کارخانه های ریسندگی و چلوار بافی تأسیس گردید.

عمر صنعت نساجی مکانیزه در دوران اخیر به 85 سال می رسد. اولین کارخانه نساجی در ایران در سال 1280 با ظرفیتی معادل 1200 دوک توسط صنیع الدوله در تهران تأسیس گردید. دومین کارخانه نساجی بلافاصله در تبریز به وجود آمد و سپس یک واحد نساجی در سال 1295 در بوشهر تأسیس و تا پایان دوره قاجاریه صنعت نساجی در ایران به همین سه کارخانه منحصر گردید.

رشد صنعت نساجی در حقیقت از سال 1300 با تأسیس کارخانه وطن (کازرونی) اصفهان با 4000 دوک ریسندگی و 100 دستگاه بافندگی شروع شده و دولت به حمایت از تولید پارچه های داخلی پرداخت و سرمایه های بسیاری برای ایجاد صنعت جدید نساجی در نقاط مختلف کشور به کار افتاد.

صنعت نساجی در بین صنایع کشور نیز از اهمیت ویژه ای برخوردار است. براساس آمار کارگاه های بزرگ صنعتی کشور در سال 1384 این صنعت در میان صنایع ایران، از نظر تعداد کارگاه (58% کارگاه های کشور) در مرتبه دوم از نظر تعداد کارکنان (6/67 درصد) در رتبه نخست و از نظر تعداد مزد بگیران تولیدی در مقام اول قرار داشته است. ارزش تولیدات این صنعت بجز صنعت نفت پس از صنایع جدید التأسیس شیمیایی در رتبه دوم 47% کل ارزش تولیدات صنایع کشور بوده و در آن سال از نظر میزان افزایش، خالص اموال سرمایه ای در مرتبه نخست (7/38%) قرار داشته است.

بازار تولید منسوجات در سطح جهان هم اکنون دارای طیف وسیعی می باشد که تنوع در طرح ها و کیفیت محصولات از مشخصه های بارز آن است. به لحاظ به وجود آمدن مصرف کننده های بیشتر همواره لازم است تا به گونه ای پویا تولیدات جدید به همراه کیفیت های مناسب و قیمت های نازل تر به مردم عرضه گردد.

محصول تولیدی این واحد نیز در زمره مواردی است که می بایست در آن تنوع در طراحی پارچه به نحو شایسته ای مورد توجه قرار گیرد. و با خلق نقش های جدید تر موجبات جذب مشتری فراهم گردد.

لازم به توضیح است که به طور کلی استفاده از ماشین های مجهز ژاکارد قاعدتاً باعث گستردگی در ایجاد نقش های متنوع خواهد نمود. و در این طرح نیز به این امر توجه شده است.

عمدتاً تولید پارچه های تار و پودی به دو صورت انجام می گیرد.

الف- تولید پارچه های تار و پودی معمولی

ب - تولید پارچه های تار و پودی تقویتی

در مورد پارچه های تار و پودی تقویتی آنچه قابل بحث است این است که می توان به سه صورت عمل نمود.

  1. 1. تقویت تار

نخ تار پارچه تولیدی بیشتر نمایان بوده و نقش اصلی را در نمای سطح پارچه ایفا
می کند که می توانند نخ تار به صورت تزئینی بوده و نخ پود از نوع معمولی باشد.

  1. 2. تقویت پود

نخ پود در این نوع پارچه ها نقش اصلی را ایفا می کند و نخ تار همان نقش نگهدارنده را داشت و در سطح پارچه چندان مشخص نبوده و تنها نخ پود است که در پارچه نمایان است. (مانند پتو)

  1. 3. تقویت تار و پود

این در پارچه هایی است که پشت و روی پارچه دارای نقش های متفاوت بوده باشد. (هر دو طرف پارچه نقش دار است).

با توجه به توضیحات مختصر بالا قابل ذکر است که می توان جهت تولید پارچه های رومبلی از تقویت پود و در مواردی نیز جهت پارچه های پرده ای از نوع تار و پودی بهره گرفت.

- ظرفیت تولید

با در نظر گرفتن امکانات اولیه تولید (منابع مالی و بازار مصرف) پیش بینی گردیده است که از 51 دستگاه ماشین بافندگی مناسب جهت تولید محصول مورد نظر استفاده کرد که با توضیحات ذیل ظرفیت سالانه واحد محاسبه گردید.

الف- ویژگی های محصول

جهت تأسیس نخ پود پارچه عموماً می توان از نخ های پنبه ای پلی استر پشم و پنبه و ویسکوز استفاده کرد که جهت محاسبات بعدی نمره نخ مصرفی 2/(7-5) که به طور متوسط 2/6 متریک در نظر گرفته می شود. همچنین تراکم نخ پود بین 12-8 خواهد بود که به طور متوسط 10 در سانتیمتر منظور می گردد.

جهت تأمین نخ تار پیش بینی شود که از نخ های 100% ویسکوز با نمره 2/36 انگلیسی با تراکم 34-30 (به طور متوسط 32 در سانتیمتر) استفاده شود.

ب - وزن پارچه تولیدی

با توجه به توضیحات قبلی و نیز وجود ضریب جمع شدگی نخ پود به میزان 4% و نخ تار 7% می توان متوسط وزن هر متر مربع از پارچه های تولید شده را محاسبه نمود.

گرم وزن نخ های پود در مترمربع

گرم وزن نخ های تار در مترمربع


کارخانه صنایع نساجی تبسم در سال 1380 در زمینی به وسعت 5000مترمربع در شهرستان تفت احداث گردید سرمایه گذاری اولیه آن 900000000 ریال است این کارخانه به کمک استانداری و بانک ملت که هر دو از شرکای آن هستند و از شرکای دیگر مهندس احمد برگزیده و مهندس احمد هدایت و مهندس علی برگزیده می باشند.

در سال 1382 کار ساختمان اداری و کار سوله آن و امکانات دیگر به پایان رسید و با مذاکراتی که با مدیران اداره صنایع داشتیم مبلغ وامی را دریافت کردیم و شروع به خریدن ماشین آلات برای کارخانه شدیم.

ماشین آلات شرکت

با مذاکراتی که با مدیر عامل شرکت غدیر داشته اند از این کارخانه 25 عدد دستگاه ماشین بافندگی مدل G6100 را خریداری کردند برای قسمت بافندگی تاری پودی.

و تعداد 32 دستگاه چرخ بافندگی از نوع حلقوی برای قسمت بافندگی حلقوی خریداری شد که این دستگاه از شرکت برادر و شرکت تویوتا می باشد.

و برای قسمت دوزندگی که احتیاج بافندگی تاری و پودی و بافندگی حلقوی را برآورده کنند و بتوانند تولیدات شرکت را به تکمیل نهایی برسانند.

در قسمت تاری پودی به جز ماشین آلات شرکت غدیر 26 دستگاه ماشین بافندگی از کمپانی دور نیر خریداری شده این شرکت 114 نفر نیرو را جذب کرده که از این تعداد 20 نفر در قسمت بافندگی تاری پودی 32 نفر در قسمت بافندگی حلقوی و 42 نفر در قسمت دوزندگی و 17 نفر در ساختمان اداری و 3 نفر هم نگهبان هستند. و این شرکت به صورت 3 شیفت کار می کند.

مشخصات فنی ماشین آلات بافندگی از کمپانی دورنیر

سیستم راپیری تیپ HT74/SD/6

مدل چهار رنگ

عرض 200 سانتیمتر

مکانیزم عرض مفید 190 سانتیمتر

می نیمم عرض قابل استفاده 130 سانتیمتر

سرعت 380-350 دور دقیقه

قدرت الکتروموتور اصلی 4 کیلووات

قدرت الکتروموتور فرعی 55/0 کیلووات

مشخصات دابی

سیم الکترونیکی

تیپ 2667STaublal

محل نصب : سمت راست ماشین

مکانیزم ظرفیت چک= 28

مشخصات چله کشی

مدل 2/4126

عرض مفید 2200 میلیمتر

سیستم ، بخشی Sectlonol

قفسه ها و بوبین ها ، تیپ C مدل 4161

چک چله= مدل 4915

مشخصات فنی ماشین آلات غدیر برد مدل G6100

مقدار پودگذاری = حداکثر 880 متر در دقیقه

سرعت : بدون حاشیه توزن 400 دور پیک در دقیقه

سرعت با حاشیه توزن 340 دور پیک در دقیقه

عرض ماشین 1400-2200 میلیمتر

قطرغلتک تار 1014-800 میلیمتر

قطر غلتک پارچه 580 سانتیمتر

تنوع تار : عملاً هیچ گونه محدودیتی وجود ندارد

تراکم تار: عملاً هیچگونه محدودیتی وجود ندارد

نخ : 7/6 الی 2000 تکس (150-5/0 متریک)

نخ قیلافت : 12 الی 3400 دی تکس (8/10-3000 دنیر)

تراکم نخ پود : بین 2 الی 108 پود در سانتیمتر (5 الی 274 درایتغ

برق مصرفی : بین 5 تا 6 کیلو وات10 تا 11 آمپر که بستگی به عرض بافت، سرعت و مکانیزم حرکت وردها دارد.

سیستم اتوماتیک پود یاب

در هنگام پارگی پود پودبندی توسط سیستم پودیاب الکترونیک از مسیر گریپر خارج شده و ماشین متوقف می شود با فشار یک دکمه و توسط یک موتور الکترونیکی سیستم در جهت عکس حرکت نموده با شناسایی مورد پارگی بین از خارج نمودن آن از دهنه کار، مجدداً با فشار دکمه استارت ماشین شروع به کار می کنند.

کنترل الکترونیکی تغذیه تار

کنترل یکنواخت کشش نخ تار توسط سنسور و یک موتور الکترونیکی انجام می پذیرد. سیستم به نحوی برنامه ریزی گردیده که در صورت پارگی نخ تار و پس از تأمین آن مجدداً به طور اتوماتیک میزان کشش نخ با توجه به نوع و خصوصیات پارچه قابل تنظیم خواهد بود.

جایگزینی عملکرد مکانیکی ارتقاء کیفی پروسه بافندگی

سیستم دابی الکترونیک یه ارایه قابلیت های بالا در بافت ساده سازی و انعطاف پذیری در عملکرد تعمیر و نگهداری ساده قابل برنامه ریزی از طریق سیستم پروگرامر دابی و یا از طریق یک ترمینال انتقال دهنده از یک سیستم ساده رایانه ای.


سیستم الکترونیکی انتخاب رنگ پود

کنترل عملکرد از طریق مکانیزم دابی الکترونیک (تنوع 6 رنگ) و با یک سیستم مستقل از دابی (تنوع 4 رنگ) انجام می پذیرد.

امکان استفاده از طیف وسیعی از نخ های مختلف

ماشین بافندگی غدیر مدل G6100 با قابلیت عملی در بافت انواع مختلف نخ های ریسیده شده طیفی مصنوعی حاصل از ترکیب نخ های یکسره از الیاف سلولزی و مصنومعی (ساده و تکسیره) نخ های ننزینی و برتاب بدون هیچ گونه محدودیتی در تراکم و ضخامت و طیف وسیعی از تنوع پود در بافت پارچه.

ماشین های بافندگی بی ماکو با پود گذاری بوسیله میله گیره و یا تسمه گیره

در ماشین های بافندگی بی ماکو ، که پود گذاری در آنها بوسیله میله گیره یا تسمه گیره انجام می شود ، بر خلاف ماشین های بافندگی یا سیستم پروژکتایل ، پود گذاری به طریق مثبت و اجباری انجام می گیرد . به عبارت دیگر عمل پود گذاری توسط جسم پود گذاری بصورت مثبت مکانیکی انجام می شود و به داخل دهنه پرتاب
نمی شود . این ماشین ها معمولا دارای یک یا دو گیره نخ پود می باشد و این گیره ها در انتهای یک میله خشک و یا تسمه الاستیک نصب شده است . میله و یا تسمه انتقال دهنده گیره نخ پود ، ارتباطی با روش پود گذاری و تکنو لوژی بافت پارچه ندارد بلکه فقط می تواند از نظر طراحی ساخت ماشین ، مسائل فنی و اقتصادی مورد بررسی قرار گیرد . ماشین های بافندگی که با روش میله گیره یا تسمه گیره کار می کند امروزه توسط کارخانه های متعددی ساخته و عرضه می شود .

ماشین های بافندگی گیره ای را می توان بر اساس نوع پود گذاری و تعداد گیره ها به چند دسته تقسیم کرد :

1-ماشین های بافندگی که عمل پود گذاری در آنها توسط یک گیره انجام می شود :

الف – روش « آنست فایوله » - گیره خالی وارد دهنه می شود و از سمت دیگر ابتدای

نخ پود را می گیرد و به داخل دهنه می کشد .

ب – روش « بالبه » - در این روش ، گیره ، نخ پود را بصورت دولا ( دوبل ) وارد دهنه می کند .

2- ماشین های بافندگی که عمل پود گذاری در آنها توسط یک گیره انجام می شود ، ولی ماشین دارای دو گیره است که متناوبا عمل پود گذاری را انجام می دهند .

در این ماشین ها پود گذاری مطابق روش « ماکی » انجام می گیرد و دو میله گیره متناوبا نخ پود را به داخل دهنه وارد می کند .

3- ماشین های بافندگی بی ما کو که برای پود گذاری اختیاج به دو گیره دارد .

الف – روش پود گذاری « گابلر » در این روش نخ پود توسط گیره آورنده ( پود آور ) بصورت دو لا تا نیمه دهنه وارد می شود ، سپس گیره برنده ( پود بر ) یک لای نخ را باز می کند و در نیمه دوم دهنه قرار می دهد .

ب- روش پود گذاری « دواس » در این روش پود گذاری ، پود بر ، ابتدای نخ پود را از پود آور می گیرد و نخ را از سر تاسر دهنه می کشد اکثر ماشین های بافندگی را پیری ، امروزه بر اساس روش دواس ساخته می شوند .

ماشین بافندگی G6200 سولزر – روتی ، راپیری ، را پیرنرم ، روش دواس

از نظر تکنولوژی این ماشین برای تولید منسوجات پنبه ای و فاستونی مناسب است . این ماشین کاربرد هایی نیز در ارتباط با تولید منسوجات صنعتی ، به ویژه « کیسه هوای اتومبیل ) داشته است . این ماشین ، مانند تمام ماشین های راپیری می تواند به مکانیزم تشکیل دهنه بادامکی ، دابی و یا ژاکارد مجهز شود .

در ماشین های راپیری، نسبت به نوع ماشین ، بازای بافت هر پود ، 7 تا 14 سانتی متر ضایعات وجود دارد . که هنگام بافت پود های گران قیمت ، رقم ملاحظه ای را تشکیل می دهد . این مکانیزم می تواند، صرفه جویی قابل ملاحظه ای در بر داشته باشد .

ماشین بافندگی گیره ای « فاتکس » و « ایور »

این ماشین توسط کارخانه « فاتکس » در لیوان ساخته می شد . پود گذاری توسط یک تسمه خشک ( غیر الاستیک ) انجام می گیرد .

گیره خالی از سمت راست ماشین ، وارد دهنه می شود و از تمام عرض آن می گذرد و موقعی که به سمت دیگر ماشین می رسد ابتدای نخ پود را می گیرد و آن را از سر تاسر دهنه می کشد .

طول تسمه غیر الاستیک کمی بیشت از عرض شانه بافندگی است و بدین جهت در سمت راست ماشین یک ریل هدایت کننده وجود دارد تا گیره پس از خارج شدن از دهنه بر روی آن قرار گیرد . از این رو عرض این ماشین تقریبا دو برابر عرض شانه آن است .

با توجه به اینکه طول تسمه برابر عرض شانه بافندگی است و گیره باید دو بار از داخل یک دهنه عبور کند ، ( یکبار خالی و یکبار با نخ پود ) توان پود گذاری این ماشین نسبت به ماشین های دیگر بی ماکو کمتر است .

در این ماشین می توان از یک تا هشت پود مختلف بصورت پیک – پیک و مخلوط کار کرد . نخ های پود مورد استفاده می تواند نخ ساده ، فانتزی دولا و غیره با
نمره های مختلف باشد .

دور ماشین برای عرض بافت 160 سانتیمتر برابر 130 دور در دقیقه است و برای عرض بافت 190 سانتیمتر برابر 125 دور در دقیقه است . ابعاد ماشین برای عرض 160 سانتیمتر برابر 280×455 سانتیمتر و برای عرض 190 سانتیمتر برابر 293*492 سانتیمتر است .

این ماشین ممکن است به مکانیزم بادامکی ، دابی با بادامک مخصوص ، یا مکانیزم ژاکارد برای تشکیل دهنه مجهز شود .

ارتفاع دهنه در این ماشین از ماشین های معمولی کمتر است دامنه حرکت دفتین برابر 75 میلیمتر است و حداکثر ارتفاع تسمه گیره ای 25 میلیمتر است .

دفتین توسط یک بادامک حرکت می گیرد و زمان مرگ عقب آن 250 درجه از دور بادامک است در این ماشین ، عرض شانه نباید از عرض پارچه بیشتر باشد ، مگر در صورتی که کناره های پارچه با طرح گاز بافته شود .

همان گونه که گفته شد در این ماشین تسمه گیره ای از داخل دهنه عبور می کند و در سمت مقابل ( چپ ) ابتدای نخ پود را ، بین کناره پارچه و سوراخ راهنمای انتخاب نخ پود می گیرد و آن را از داخل دهنه می کشد ، تا جایی که ابتدای نخ پود از کناره سمت راست پارچه نیز خارج شود .

ابتدای نخ پود که از کناره پارچه شده است توسط یک مکنده مکیده می شود تا نخ پود در حالت کشیده ، در دهنه قرار گیرد این عمل از برگشتن انتهای نخ پود به داخل دهنه بعد نیز جلوگیری می کند چون دفتین زدن در دهنه بسته انجام می شود ، در نتیجه یکنواختی کشش نخ پود حفظ می گردد .

کناره پارچه ممکن است یک کناره گاز بوده و یا با استفاده از نخ های تار اضافی ، تشکیل شده باشد ، این نخ ها می تواند پس از یک یا چند بار دفتین زدن با نخ پود بافت رود .

انتهای نخ های پودی که از کناره پارچه خارج شده است بین یک غلتک متحرک و یک صفحه قطع کننده قرار می گیرد و پس از قطع شدن به داخل جعبه ضایعات مکیده می شود .

مکانیزم بوسیله یک الکترو موتور به قدرت 2 اسب به حرکت در می آید .

مکش ضایعات توسط یک الکتروموتور دیگر به قدرت اسب انجام می شود این ماشین به دگمه هایی برای بکار انداختن و متوقف کردن مجهز است . توسط این
دگمه ها می توان ماشین را بصورت منقطع نیز بکار انداخت . این دگمه ها در سمت راست ، چپ و پشت ماشین قرار گرفته است .

در ماشین لامپ هایی وجود دارد که در صورت توقف ماشین ، مشخص می کنند که توقف به چه علت صورت گرفته است .

ساختمان ماشین

حرکت از الکتروموتور و توسط یک تسمه پروانه به پولی مکانیزم مرکزی منتقل
می شود بر روی محور پولی قائم بادامک قرار دارد در قسمت فوقانی محور ، چرخ لنگ قرار دارد قسمت پایین محور ، توسط چرخ دنده های مخروطی و محور افقی را حرکت می دهد در داخل شیار بادامک ، پیرو قرار دارد و توسط بازویی به دفتین و پایه متصل است فنر های برای نگهداشتن پیرو در یک سمت شیار بادامک است دفتین حول محور دوران نوسان می کند شیار بادامک به طریقی است که دفتین زدن در 110 درجه از گردش بادامک انجام می شود و در مدت 250 درجه ، دفتین در زمان مرگ عقب بسر می برد .

حرکت تسمه گیره ای

بازوی به میله متصل شده است و سمت دیگر و پایه به اهرم دذو بازوی مفصل است یک سمت اهرم دو بازوی به بازوی مفصل شده است و سمت دیگر آن به انتهای تسمه گیر متصل است . طریقه اتصال بازوی بازوی به تسمه گیره توسط دو پیرو که بر روی راهنمای و حرکت می کند انجام می شود پیرو های با کمک راهنمای و باعث
می شود که حرکت گیره یک خط مستقیم باشد .

فرمان باز و بسته شدن گیره

میله ، که داخل بدنه تسمه گیره بطور آزاد دوران می کند در یک سمت دارای زبانه و در سمت دیگر دارای دکمه است .

زبانه با سطح زیری نوک تشکیل یک گیره را می دهد بدین ترتیب می توان این گیره را با فشار دادن دکمه از انتهای تسمه ، باز و بسته کرد سطوح خط کش های و که قابل تنظیم هستند توسط دکمه و میله مربوط گیره ، را باط و بسته می کند این عمل برای گرفتن و رها کردن نخ پود است تاثیر بر روی باعث باز و بسته شدن گیره برای گرفتن ابتدای نخ پود در سمت چپ ماشین می شود و تاثیر بر روی به منظور آزاد شدن ابتدای نخ پود در سمت راست ماشین می باشد .

مکانیزم قطع کننده نخ پود

بر روی محور ، که با سرعتی رابر ، سرعت مجوز اصلی ماشین می چرخد ، بادامک وجود دارد این بادامک توسط اهرم دو بازو اهرم قائم 40 را که در انتهای آن تیغ قطع کننده نخ پود قرار دارد و به بالا و پایین نوسان می دهد در هر بار پود گذاری ، بلافاصله بعد از آنکه گیره ابتدای نخ پود را گرفت و به داخل دهنه وارد کرد ، تیغ قطع کننده نخ پود به بالا رفته و نخ پود را در نزدیکی پارچه قطع می کند.

مکانیزم کشش دهنده نخ پود

بادامک بر روی محور قرار دارد ، توسط یک اهرم دو بازو ، حرکت را به یک میله قائم منتقل می کند در انتهای این میله صفحه راهنمای نخ های پود که از بو بین های نخ پود تغذیه می شود قرار دارد در هر بار پود گذاری نخ پود توسط تسمه گیره ای کشیده شده و بطور ناگهانی رها می شود این امر سبب می شود که نخ پود نتواند بصورت کشیده ، داخل دهنه قرار گیرد و به خوبی به لبه پارچه کوبیده شود به منظور جلوگیری از این اشکال ، بلافاصله بعد از رها شدن نخ پود توسط تسمه گیره ای ، صفحه راهنمای بالا رفته و سبب می شود که نخ پود همواره با کشش ثابت داخل دهنه بطور کشیده نگهداشته شود .

مکانیزم فرمان برای ایجاد کناره پارچه

در خارج از ماشین ، بادامک که بر روی محور قرار دارد ، توسط یک اهرم دو بازو میله قائمی را به بالا و پایین نوسان می دهد ، با این نوسان نخ های اضافی که برای ایجاد کناره پارچه در نظر گرفته شده است می تواند در هر بار پود گذاری و یا چند بار پود گذاری بافت حاشیه را ایجاد کند تنظیم این عمل توسط اهرم که از مکانیزم دابی و یا ژاکارد حرکت می گیرد امکان پذیر است .

مجموعه اهرم هایی که از بادامک حرکت می گیرد ، سبب می شود که میله بتواند تقریبا 15 میلیمتر به داخل دهنه ، از کناره چپ پارچه وارد شود این میله نخ تار اضافی را که منظور ایجاد کناره پارچه در نظر گرفته شده است ، به داخل دهنه ، همراه خود می کشد سوزن ، قائم بر سطح دهنه ، داخل آن می شود ، تا حلقه ایجاد شده توسط نخ تار اضافی را بگیرد لحظه ای قبل از کوبیدن نخ پود ، این سوزن از داخل دهنه خارج شده و نخ تار کناره را رها می کند نوسان سوزن به منظور داخل و خارج شدن از دهنه توسط سطوح و انجام می شود .

به منظور ایجاد کناره های قرینه در دو طرف پارچه ، از یک مکانیزم میل لنگی دوبل استفاده می شود .

رگولاتور غلتک پارچه

با چرخیدن محور ، چرخ لنگ نیز می چرخد و به میله یک حرکت نوسانی می دهد . این حرکت به اهرم دو بازوی منتقل می شود و میله قائم متصل به محور انگشتی را به بالا و پایین حرکت می دهد این حرکت به چرخ دنده انگشتی و از طریق حلزونی و چرخ دنده حلزونی به غلتک کشیدن پارچه منتقل می شود .

پارچه پس از عبور از غلتک کشیدن پارچه به دور غلتک پارچه پیچیده می شود این غلتک حرکت خود را از غلتک کشیدن پارچه توسط زنجیر و چرخ دنده زنجیری و یک ترمز اصطکاکی می گیرد توسط پدال می توان انگشتی را ، که مانع از چرخیدن رگولاتور در جهت عکس می شود از چرخ دنده انگشتی جدا کرداین عمل را می توان توسط دسته و پیرو نیز انجام داد . توقف رگولاتور توسط یک الکترو مغناطیس که بطور مستقیم بر روی دسته عمل می کند انجام می شود .

مکانیزم قطع کننده انتهای نخ پود

بر روی محور ، چرخ دنده ای وجود دارد که چرخ لنگ را می چرخاند و از طریق انجام اهرم های رابط ، غلتک یک حرکت نوسانی می گیرد بر روی این غلتک ، صفحه فشار وارد می کند و عمل یک قیچی را انجام می دهد .



بررسی تاریخچه پلی استرلیف پلیمری

پلی استرلیف پلیمری خطی مصنوعی بوده که در انگلستان توسط شیمیدان هایی بنام ژآروین فیلد و ژتدیکسون عضو جامعه کالیکو پرنیتر Calico Printer کشف و توسعه یافت این اقدام در واقع توسط مستقیم کارهای دبلیو اچ کاروترز بروی
دسته بندی نساجی
فرمت فایل doc
حجم فایل 1540 کیلو بایت
تعداد صفحات فایل 77
بررسی تاریخچه پلی استرلیف پلیمری

فروشنده فایل

کد کاربری 8044

فصل اول

مواد اولیه

1-1- تاریخچه

پلی استرلیف پلیمری خطی مصنوعی بوده که در انگلستان توسط شیمیدان هایی بنام ژ.آر.وین فیلد و ژ.ت.دیکسون عضو جامعه کالیکو پرنیتر Calico Printer کشف و توسعه یافت . این اقدام در واقع توسط مستقیم کارهای دبلیو . اچ . کاروترز بروی
پلی استرها محسوب می گردد. در این رابطه کارخانه هایی برای تولید پلی استر تاسیس گشت . کمپانی دوپونت امریکا امتیاز این کارخانه ها را خریداری نمود و شماره ثبتی در امریکا یعنی 2465319 را بخود اختصاص داد . پلیمرولیف ریسیده شده آن در کارخانه کینستون Kinston واقع در کارولینای شمالی در تاریخ مارس 1953 ساخته شد . نام تجارتی پلی استر در امریکا به داکرون موسوم گردید . لیف و نخ فیلامنت تولیدی در انگلیس تری لن نام داشت .تری لن و داکرون از نظر ساختار شیمیایی یکی هستند . این فرآورده از همان اوان تولید در بازار جذب گردید و هر روزه نیز به شهرتش افزوده گردید و امروزه در سرتاسر دنیا ، آن هم به اوزان نجومی تولید و به مصرف می رسد . این لیف با ساختار شیمیایی برابری توسط هوخست انگلستان( ترویرا) ، انکالون انگلیس ( ترلنکا ) وکیل روت واقع در ایرلند شمالی بنام (لیرل ) با ماهیت شیمیایی پلی ( اتیلن ترفتالات ) تولید می گردد . داکرون ساخت آمریکا و هم چنین فورترل تولیدی به وسیله Fibe industry نیز از شهرت کافی برخوردار است . [1]

پلی اتیلن ترفتالات که به طور معمول PET نامیده می شود یکی از مهمترین پلیمرهای مهندسی است که برای تولید محصولات مختلفی از جمله الیاف نساجی ، نخ تایر ، بطری و ظروف ، فیلم های نواری صوتی و تصویری ، فیلمهای پزشکی اشعه ایکس ، فیلمهای بسته بندی ، اجزای مواد تزریقی و ورقه ها استفاده می شود . میزان مصرف پلی استر بر حسب کیلو تن در جدول زیر آمده است :

سال 1990

سال 1994

سال 1998

الیاف

8500

11157

16500

بطری

1200

2460

4200

فیلم

900

1000

1200

غیره

900

1000

850

کل

11500

15617

22570

جدول (1-1) مصرف پلی استر [2]

همانطور که ملاحظه شده است نرخ رشد مصرف پلی استر 98% در سال است . الیاف پلی استر 60% الیاف مصنوعی را تشکیل می دهد . بررسی خواص این محصول از اهمیت خاصی برخوردار است . وزن ملکولی یکی از این خواص مهم است که تاثیر بسزایی در کیفیت محصول ایفا می کند. [2]

شکل (1-1 ) تولید ماهیانه الیاف پلی استر ( الیاف استیپل)[2]

شکل (1-2 ) تولید ماهیانه فیلامنت پلی استر[2]

1-2- ماهیت شیمیایی :

پلی استریک استرپلیمریک است. استری که در اثر ایجاد واکنش بین یک دی اسید و یک دی الکل بوجود می آید اسید مذکور ترفتالیک اسید و الکل مذکور اتیلن گلایکول
می باشد.

فرمول شیمیایی این دو ماده اصلی پلی استر بصورت زیر می باشد :

T.P.A اسید ترفتالیک COOH-C6H4-COOH

EG اتیلن گلایکول OH-C2H4-OH

همان گونه که مشاهده خواهد شد الکل و اسید هر دو دارای دو ظرفیت بوده، اسید محتوی دو گروه اسید کربوکسیلیک –COOH و الکل نیز دارای دو گروه هیدروکسیل –OH می باشند .

در صورتیکه اسید و الکل، هر دو یک ظرفیتی بودند ، واکنش در همان مرحله مونومری متوقف می گردد یعنی:

شکل (1-3 )

اتیل بنزوات دارای گروههای انتهایی فعال نبوده و نهایتاً واکنش از این مرحله فراتر نمی رود. حتی اگر یکی از ترکیبات فوق، مثلاً الکل دوظرفیتی بوده ولی دیگر جزء چنین حالتی را نداشته باشد، تنها یک استرمونومری ساده بوجود می آید یعنی :

شکل (1-4 )

و بعلاوه مقدار کمی اتیلن دی بنزوات بفرمول زیر تشکیل می گردد :

شکل (1-5 )[1]

اما اگر هر دو ، یعنی اسید و الکل دوظرفیتی باشند ، آنگاه واکنش می تواند ادامه یافته و پلیمری را ایجاد کند یعنی:

شکل (1-6 )[1]

محصول ، یعنی دی مر هنوز محتوی گروههای فعال در هر دو سر انتهایی ملکولش بوده ، لذا پلیمریزاسیون می تواند تداوم یافته و یک پلیمر سنگین ، در حدود هشتاد هسته بنزنی بوجود آید و لیف های خوبی را تولید نماید . لیف آمریکایی ، داکرون از اسید تولید گشته و واکنش کامل را می توان بصورت زیر نوشت :

شکل (1-7 ) داکرون[1]

در مورد تولید لیف تری لن بجای استفاده از ترفتالیک اسید از دی متیل استر ترفتالیت استفاده می گردد. احتمالاً استفاده از استربجای اسید بدلیل اساسی بودن درجه خلوص مواد فعل و انفعال کننده، ارجحیت داشته و اصولاً خالص سازی دی متیل ترفتالات در مقایسه با اسید ترفتالیک توسط تقطیر درجه حرارت های پائین ساده تر است ولی روشهای تولید اسید ترفتالیک خاص بنحو گسترده ای بهبود یافته و در حال حاضر از این اسید برای پلیمریزاسیون استفاده می کنند. [3، 1]

در سال قبل از دهه 80 بدلیل عدم دسترسی به فن آوری تولید اسید ترفتالیک از دی متیل ترفتالات (DMT ) بعنوان ماده اصلی اولیه استفاده میشد . ولی اکنون از اسید ترفتالیک استفاده می شود و بدلیل از بین یردن بسیاری از فرآیند های جهت تولید DMT ، محصول T.P.A ارزانتر و ایده آلتر تهیه شده و راندمان کاری بالاتری را ارائه می نماید . در یک تحقیق بررسی شد که در صورت استفاده از اسید ترفتالیک ، 17% کمتر از DMT ، مواد مصرف می شود . به عبارت دیگر برای تولید یک تن پلیمر ، 865 کیلوگرم اسید ترفتالیک مورد نیاز است در صورتیکه 1030 کیلوگرم DMT مورد نیاز است . همچنین مصرف کاتالیزور نیز بسیار کمتر می باشد . از طرفی آلودگی جانبی حاصل از انجام واکنش ها کمتر است . [4]

1-3- تولید مواد اولیه چیپس پلی استر

1-3-1- اسید ترفتالیک

این اسید از پارا – زایلن فاقد هر گونه ایزومر اورتوومتا ساخته می شود . پارا زایلن از برش C8 نفتا که توسط تقطیر از نفت خام جدا شده ، بدست می آید . زمانی
نمی توانستند آنرا از ایزومرهای اورتوومتا توسط تقطیر جدا سازند . دلیل آن نزدیک بودن نقطه جوش های سه ایزومربیک دیگر بوده است . در نهایت و با استفاده از کریستالیزاسیون این جداسازی صورت پذیرفت . پارازایلن در دمای 13 و متازایلن در دمای 48- و اورتوزایلن در دمای 25- منجمد می شوند .[1]

در نهایت با اکسیداسیون پارازیلن در مجاورت اسید نیتریک (HNO3 ) و در درجه حرارت 220 و فشاری در حدود 30 اتمسفر و با بازده 90-80% تولید می گردد. انواع دیگری T.P.A در شرق آسیا و ژاپن مصرف می شود که اصطلاحاً H.T.A یا Q.T.A نام دارند . اما این محصولان دارای ناخالصی هستند . روش دیگری که احتمالاً در انگلستان بکار می رود ، اکسید کردن پارا-زایلن با هوا در 200 در و در مجاورت تولوات کبالت بعنوان کاتالیزور بوده که ابتدا اسید تولوئیک تولید گشته آنگاه استری شده و تولوات میتل را تولید می کند که با تداوم اکسید اسیون ، مونومیتل ترفالات تولید می گردد . [4و1]

شکل (1-8 ) مراحل تولید اسید ترفتالیک[1]

1-3-2- اتیلن گلایکول الکل

برای تولید این الکل نفت را کراکینک کرده و از این طریق اتیلن را بدست می آورند . اتیلن در مجاورت کاتالیزور هوا اکسید اتیلن داده و تحت فرآیند هیدراتاسیون به اتیلن گلایکول تبدیل می گردد .

شکل (1-9 ) مراحل تولید اتیلن گلایکول[1]

اکثر کارخانه های تولید کننده چیپس در ایران ، مونومراتیلن گلایکول الکل را از کارخانه پتروشیمی اراک خریداری کرده و اسید ترفتالیک را خود تهیه می کنند.

1-3-3- مواد دیگر دخیل در تولید چیپس پلی استر

الف – کاتالیزور :

کاتالیزور مورد مصرف چیپس پلی استر بیشتر نمک های عناصر منیزیم (mg ) ، منگنز (mn ) ، روی (zn ) و کلسیم (ca ) وآنتیموان (sb ) می باشد. اکثراً از استات آنتیموان جهت کاتالیزور استفاده می گردد. فرمول این کاتالیزور بصورت زیر می باشد:

Sb(CH3COO)3 در صورت اضافه نمودن تری استات آنتیمون اسید استیک هم تولید می گردد .[5]

هدف از استفاده کاتالیزور تسریع در پیشرفت واکنش بدون تاثیر در مواد واکنش
می باشد .

در سالهای اخیر شرکت ICI اعلام کرده است به کاتالیزورهایی دست پیدا کرده است که موجب افزایش میزان تولید تا 25% شده است .[4]

ب – مواد کدر کننده پلیمر :

جهت کدر کردن رنگ چیپس های پلی استر از دی اکسید تیتانیوم Tio2 استفاده می شود . نحوه استفاده از این ماده در کارخانه های مختلف متفاوت می باشد .

بسیاری از کارخانجات این پودر ها را در اتیلن گلایکول بصورت دیسپرس شده در
می آورند و به دیگ تولید خمیر اضافه می کنند و بعضی دیگر به راکتورهای بعدی تولید اضافه می کنند. ( استریفیکاسیون II ).[5]

نکته بسیار مهم در مورد استفاده از دی اکسید تیتانیوم این است که باید حتماً قبل از مصرف این پودر از فیلتر یا الک گذشته تا دانه های درشت در خود نداشته باشد و بعد از سوسپانس شدن در اتیلن گلایکول هم از یک فیلتر عبور داده می شوند تا حتی الامکان محلولی بدون ناخالصی به پروسه تغذیه گردد.

1-4- تولید پلی استر از ضایعات

یکی از راههای تولید پلی استر استفاده از اضافاتی که از مراحل مختلف تولید الیاف و فیلامنت پلی استر حاصل می شود ، است . همچنین بطری هایی که پس از مصرف دور ریخته می شود یکی از منابع تولید دوباره پلی استر است . در یک کارخانه تولید الیاف مصنوعی بارندمان بهینه ، نیزان ضایعات حاصل از الیاف حدود 3% است و بنابراین ضایعات پلی استری حاصل از الیاف در سال 2000 در حدود 40000 تن می باشد. میزان ضایعات بطریها هم 2/1 میلیون تن در سال است . پس کل ضایعات 6/1 میلیون تن در سال است . ویسکوزیته ذاتی[1] الیاف ضایعاتی 65/0 – 55/0 و ضایعات بطری 8/0 – 7/0 است . بنابراین این دو نوع ماده ضایعاتی ساختار متفاوتی دارند . برای تولید الیاف پلی استر از ضایعات ، ضایعات بطری بیشتر مناسب است . می توان پلی استر ضایعاتی را بازیابی شیمیایی کرد یعنی به مواد اولیه مناسب تبدیل کرد . سه روش برای تجزیه شیمیایی پلی استر به اسید ترفتالیک وجود دارد :

1- هیدرولیز فشاری با آب

2- هیدرولیز اسیدی در حضور اسیدهای قوی غیر آلی

3- صابونی کردن با قلیا [7]

فصل دوم

تولید چیپس پلی استر

2-1- مراحل تولید چیپس پلی استر و عوامل کمکی

در این قسمت از مراحل تولید چیپس در کارخانه پلی استر یزد استفاده شده است .

مراحل تولید در سه راکتور صورت می پذیرد. نمای شماتیک مراحل تولید بصورت زیر می باشد :

شکل (2-1 ) مراحل تولید پلی ( اتیلن ترفتالات )

مرحله یک: در این مرحله یک دیگ تولید خمیر وجود دارد.(Paste Preparation)

در این دیگ ، دومونومر ( اتیلن گلایکول – اسید ترفتالیک ) بهمراه کاتالیزور و کدر کننده در دمایی نزدیک به 40 توسط یک همزن مخلوط شده و با توجه به زمان مانده (5/4 دقیقه ) ایده آل ترین ماده قابل تغذیه به راکتور اول یعنی راکتور استریفیکاسیون انتقال می یابد .

لازم به ذکر است اسید ترفتالیک بصورت پودر و اتیلن گلایکول بصورت مایع تولید و مصرف می شوند . همزن با تعداد دور معینی که می زند خمیر را به غلظت مناسب می رساند . نسبت های تغذیه هم مشخص شده است . این مرحله بدون فشار صورت می پذیرد . خمیر تولید شده در این مرحله در لوله هایی به صورت استریفیکاسیون انتقال می یابد .

مرحله دو : در این راکتور که دو مرحله است الکل با اسید واکنش داده و استر و آب تشکیل می گردد .

شکل (2-2 ) مراحل تولید دی اتیلن گلایکول ترفتالات[5]

محصول استریفیکاسیون دی اتیلن گلایکول ترفتالات است .

یک راکتور استریفیکاسیون شامل دو مرحله می باشد :

1- مرحله اول با دمای کمتر و فشار بیشتر

2- مرحله دوم با دمای بیشتر و فشار کمتر

مرحله (2-3 ) مراحل استریفیکاسیون

مونومر از استریفیکاسیون مرحله یک به استریفیکاسیون مرحله دو انتقال می یابد .

آب تولیدی و اتیلن گلایکول اضافی توسط واحد تقطیر (Process Column ) بخار و از راکتور خارج می گردد. این واحد در صفحات بعدی توضیح داده می شود .

طبق استاندارد 90% استری شدن در مرحله اول و تا 96% استری شدن در مرحله دوم اتفاق می افتد .

در بعضی از کارخانجات هر کدام از این مراحل در یک راکتور مجزا صورت می گیرند

استریفیکاسیون کامل 100% در این مرحله لازم نیست . اولاً چون که در راکتور بعدی استریفیکاسیون کامل می گردد ثانیاً در صورت کامل شدن استریفیکاسیون در همان دو مرحله آب تولیدی زیاد خواهد شد . ثالثاً صرف هزینه هدف نیست و نخواهد بود.

مرحله سوم : مونومر DGT از استریفیکاسیون به مرحله پیش پلیمریزاسیون (PP)
می آید. فشار این راکتور تحت خلاء و در حدود 35-30 میلی بار و دمای این راکتور
275-265 می باشد. استری شدن مونومر در این مرحله به بالای 99% می رسد . طول زنجیره پلیمری افزایش می یابد .

از دیگر واکنش های صورت گرفته در حالت بخار استریفیکاسیون و پیش پلیمریزاسیون تولید استالدئید می باشد . واکنش بصورت زیر است :

شکل (2-4 )

در صورت تولید استالدئید این ماده در واکنش با اتیلن گلایکول ، متیل دی اکسالات می دهد.

شکل (2-5 ) مراحل تولید متیل دی اکسالات MDO[5]

مرحله چهارم : پلیمریزاسیون نهایی در این راکتور انجام می شود . دما به حداکثر خود یعنی 280 و فشار به حداقل خود یعنی 2-1 میلی بار می رسد . چنین فشاری توسط سیستم ایجاد خلاء تأمین می گردد . بطور کلی محصول استریفیکاسیون وقتی به مرحله پلیمریزاسیون (اعم از پیش پلیمریزاسیون و پلیمریزاسیون نهایی) می رود . طبق فرمول زیر واکنش صورت می گیرد :

DG دی اتیلن گلایکول ترفتالات = C

پلیمر پلی استر =

اتیلن گلایکول اضافی : A

در راکتورنهایی(فینیشر) همزن وجود دارد (در کارخانه پلی استر یزد دو همزن و در مجتمع پتروشیمی ماهشهر یک همزن)

رسیدن به غلظت کافی توسط همین همزنها تأمین می گردد. سطح مواد پلیمری در هر راکتور جداگانه کنترل می گردد. ولی در فینشر سطح مواد پلیمری، دما، فشار و زمان ماند اهمیت بسزایی دارد.

ویسکوزیته تقریباً تا قبل از فینیشر ثابت است ولی در این راکتور بصورت لگاریتمی بالا می رود . اصولاً قبل و بعد از این راکتوریک فیلتر قوی وجود دارد که جدا کننده ناخالصی ها و ژلهای موجود در پلیمر است . یک ویسکومتر در زیر راکتور نهایی جهت کنترل ویسکوزیته نصب گردیده است که به صورت Online اطلاعات را در اختیار اتاق کنترل می گذارد. [5]

همزنها دارای یک میله مرکزی بوده که این شفت کار همزدن جریان پلیمری را بر عهده دارد ویسکوزیته پلیمر در بعد از این مرحله ویسکوزیته نهایی پلیمر خواهد بود . میزان فشار اعمالی روی این راکتور عامل بسیار مهمی در کنترل وبسکوزیته می باشد . پارامتر های موثر در کنترل ویسکوزیته بصورت زیر است :

1- فشار

2- دما

3- زمان ماند

4- دور همزن

5- میزان تغذیه پلیمر از دریچه تغذیه فینیشر

میزان فشار در فینیشر از طریق پمپ مکنده گلایکول موجود در راکتور فینیشر تولید می گردد. این مکنده بخارات گلایکول را از درون راکتور میکده و آنرا به ستون تقطیر جهت بازیابی گلایکول انتقال می دهد .

مرحله نهایی تولید چیپس (Pelletizing )

در این مرحله پلیمر خروجی از راکتور فینیشر بصورت رشته هایی در می آید و سپس این رشته های داغ با آب خنک گشته و سپس به توسط قطع کن در اندازه مورد نظر چیپس ها قطع شد و از لوله خنک کن گذشته و خشک می گردد سپس روی سرند لرزشی ریخته و چیپس های اندازه و نا اندازه از هم جدا شده و در کیسه های بسته بندی ریخته می شود. گاز نیتروژن هم به عنوان انتقال دهنده این چیپس ها بکار
می رود. نمای کلی این عملیات در شکل زیر آمده است

شکل (2-6 ) نمای واحد تولید چیپس[5]

عوامل کلیدی در کنترل این عملیات بشرح زیر می باشند :

1- میزان تغذیه پلیمر در مرحله رشته سازی

2- تعداد سوراخهای رشته ساز

3- سرعت قطع کن

4- میزان خشک کردن چیپس ها

در این مرحله تنش برشی به پلیمر وارد می آید که این تنش با افزایش وزنی ملکولی چیپس ها افزایش می یابد و این تنش یکی از عوامل درگیر با تولید می باشد .

2-2- واحد های کمکی دیگر جهت تولید

2-2-1- واحد ایجار خلاء[2] :

این واحد با مکیدن بخارات موجود در راکتورهای پیش پلیمریزاسیون و پلیمریزاسیون نهایی خلاء را ایجاد می کند . بخارات میکده شده جهت سرد شدن و بازاریابی به واحد ستون تقطیر فرستاده می شود . سیستم تبخیر مواد اضافی در راکتور ها از مهمترین بخش های این واحد است .

2-2-2- واحد ایجاد حرارت :

از طریق مایع حرارت داده شده مانند روغن داغ حرارت اطراف راکتور تأمین
می گردد. این روغن بعنوان ژاکت راکتور شناخته می شود . پمپ های انتقال روغن داغ[3] هم جهت انتقال بکار می روند.

2-2-3- واحد تصفیه آب :

در یک کارخانه پلی استر آب مصرفی سه حالت دارد :

1- آب شرب

2- آب چیلر

3- آب خنک کن پلیمر

آب چیلر دارای دمای 10-5 می باشد و آب جهت خنک کردن رشته های پلیمری در واحد تولید نهایی دارای دمای 40-30 می باشد .[5]

2-2-4- واحد تولید هوای فشرده ابزار دقیق و Plant air

بترتیب مصارف ابزار دقیقی عمدتاً شیر کنترل ها و مصارف پروسسی ( عمدتاً تمیز کردن تجهیزات طبق برنامه روتین)

2-2-5- واحد اولید نیتروژن

جهت انتقال چیپس ها بعد از Cutter به سیلو ها ذخیره سازی محصول

2-2-6- واحد آماده سازی کاتالیزور

بصورت حل شده در اتیلن گلایکول

2-2-7- واحد تصفیه پساب

2-2-8- واحد آماده سازی

Tio2 بصورت سوسپانسیون در اتیلن گلایکول

2-2-9- واحد فیلتر شویی :

در این واحد فیلتر بعد از فینیشر که وظیفه زدودن ناخالصی های پلیمر را دارد با دی اتیلن گلایکول داغ شسته می شود . زمان شستشو بصورت زیر سنجیده می گردد:

اختلاف فشار بین دو طرف فیلتر یک عدد ثابتی است در صورت کاهش این عدد، سوراخها فیلتر که در حدود 20 A است بسته شده یا ناخالصی راه این سوراخها را سد کرده است . زمان شستشو حتی الامکان باید ایده آل باشد .

2-2-10- واحد تقطیر Process Column

در این واحد بخارات آب و اتیلن گلایکول کندانس می گردد و سپس از هم جدا شده و اتیلن گلایکول را به مرحله استریفیکاسیون و آب را به پروسه تولید بر می گرداند.

2-3-قسمت های دیگر جهت تولید

در کنار واحد های فوق قسمتهای ذیل بصورت غیر مستقیم در روند پروسه تأثیر گذار می باشند :

2-3-1- آزمایشگاه : این واحد باید تمامی آزمایشات کیفی جهت سنجش میزان کیفیت محصولات را با استاندارد مطابق با استاندارد جهانی انجام دهد. آزمایشاتی نظیر، میزان آب در نمونه – میزان الیگومر– میزان دی اتیلن گلایکول– میزان دی اکسید تیتانیوم– ویسکوزیته ذاتی – نقطه ذوب بصورت گراف DSC– میزان زردی– میزان گروههای کربوکسیل COOH – موقعیت دی اکسید تیتانیوم در نمونه و انجام آزمایشات روی مواد اولیه .

2-3-2- برق و ابزار دقیق

با اعمال کنترل پروسه و تجهیزات و تعمیر و نگهداشت قطعات الکترونیکی پروسه

2-3-3- ماشینری :

تعمیر و نگهداشت تجهیزات مکانیکی پروسه از قبیل پمپ هاو... [5]

2-4- مشخصات عمومی چیپس ها

عموماً دو نوع ناخالصی در چیپس پلی استر موجود می باشد :

1- مقدار کمی اتیلن گلایکول بکار رفته در سنتز که خودش به دی اتیلن گلایکول تبدیل شده و در نتیجه با حضور این ماده در سیستم، چند گروپ، نظیر گروپ های زیر که دارای یک بند اتری بود بوجود می آید :

افزایش DEG در نمونه ها موجب کاهش دمای ذوب و دمای شیشه ای و افزایش کدری رنگ می شود.

2- دومین ناخالصی معمولاً در حدود 5/1 درصد در پلیمر وجود داشته و در لیف حاصله از آن ، یک تری مر حلقوی به فرمول زیر مشتق می گردد.

شکل (2-7 ) ترکیب شیمیایی الیگومر[3و1]

مانند بسیاری از پلیمر های سنتیتک دیگر ، همه پلیمرهای پلی ( اتیلن ترفتالات ) تهیه شده بوسیله فرآیند های صنعتی حاوی مقدار کمی از همین ترکیبات با وزن ملکولی کم یا الیگومر ( Oligomer ) هستند . این الیگومتر های حلقوی مثلثی بمقدار خیلی کمی در آب محلولند . در حلالهایی مانند تتراکلرید کربن CCL4 و کلروفرم CHCL3 حل می گردند. این مواد بشکل پودر کریستالی و سفید و دارای نقطه ذوب بالایی در محدوده 320- 310 هستند . این الیگومر ها در طی فرآیند های مختلف نساجی مثل تکسچره کردن رنگرزی ، تثبیت حرارتی و خشک کردن به سطح الیاف مهاجرت می کنند هر چقدر درجه حرارت و زمان این عملیات افزایش یابد مهاجرت این مواد به سطح الیاف بیشتر می گردد. الیگومرهای حلقوی مثلثی به دو صورت کریستالی متفاوت وجود دارند : نوع A و نوع B

حلالیت نوع A در آب دو برابر حلالیت نوع B می باشد از اینرو فیلامنت هایی که در آنها الیگومر های نوع A بیشتر است در حمام رنگرزی کمتر رسوب می دهند . از اینرو نوع A الیگومرها ایده آلتر از نوع B آن است . در حمام رنگرزی الیگومرها ایتدا در محلول رنگرزی در حرارت 135-125 بصورت دیسپرس در می آیند ولی قادر هستند که به گرد یکدیگر جمع شوند و روی سطح کالای نساجی نشسته و مشکلات عدیده ای را فراهم می سازند .

ثابت شده است که عملیات زیر برای کاهش میزان الیگومرها و زدودن آنها از روی سطح الیاف و دستگاه ها موثر هستند :

1-رنگرزی الیاف در حداقل درجه حرارت لازم و در حداقل زمان ممکن با کمی کریر

2-خارج کردن پساب ها بصورت داغتر و شستشوی کالا با آب داغ جهت جلوگیری از رسوب الیگومر ها

3-تکمیل شدن نخ رنگرزی شده بصورت فوری

4-تمیز کردن و رسوب زدایی ماشین آلات و لوله های مربوطه

اندازه چیپس ها :

اندازه چیپس ها با توجه به نظر مشتری و امکان دسترسی به آن ، با تغییرسرعت قطع کن در واحد تولید چیپس امکان پذیر است . [3]


بررسی مهمترین خواص مکانیکی پارچه

یکی از مهمترین خواص مکانیکی پارچه استحکام آن می باشد همچنین ازدیاد طول تا حد پارگی نیز حائز اهمیت می باشد عوامل مختلف روی این خواص می توانند تاثیر گذار باشند از جمله جنس نخ ، نمره نخ ، نوع نخ و تراکم و غیره
دسته بندی نساجی
فرمت فایل doc
حجم فایل 2016 کیلو بایت
تعداد صفحات فایل 148
بررسی مهمترین خواص مکانیکی پارچه

فروشنده فایل

کد کاربری 8044

فهرست مطالب

عنوان صفحه

چکیده 3

فصل اول 5

تعاریف و کلیات 6

1-1- تنش 6

2-1- کرنش 6

3-1- نمودار تنش – کرنش 6

4-1- مدول الاستیسه (مدول اولیه) 7

5-1- رفتار الاستیک – پلاستیک ماده 8

6-1- نسبت پواسن 8

7-1- انرژی کرنشی 8

8-1- منحنی تنش – کرنش پارچه 9

9-1- استحکام کششی : 9

10-1- استحکام تا حد پارگی : 9

11-1- روش های مختلف تست کشش : 10

12-1- روش های اندازه گیری استحکام پارچه : 11

13-1- روش نمونه گیری استاندارد پارچه : 11

فصل دوم 12

روش‌های مطالعه خواص مکانیکی پارچه 13

1-2- مقدمه 13

2-2- تعیین مدل هندسی 14

3-2- مدل هندسیPeirce 15

4-2- آزمایش تغییرات ابعادی در پارچه کرباس: 18

5-2- مدل هندسی با مقطع بیضوی 18

6-2- مدل هندسی پیرس با مقطع‌های نخ مسطح شده 19

تعیین مدل مکانیکی 19

7-2- روش انرژی Hearl , Shanahan 19

8-2- اصلاح مدل ساختمانی پیرس 24

فصل سوم 33

1-3- آزمایشات 34

فصل چهارم 46

1-4- مقدمه : 47

2-4- بررسی استحکام در جهت تار نمونه ها با تراکم های مختلف 48

3-4- تجزیه و تحلیل نتایج : 66

4-4- تجزیه و تحلیل نتایج : 86

5-4- تجزیه وتحلیل داده ها : 140

6-4- طرح پیشنهادی جهت ارائه پروژه 141


چکیده

یکی از مهمترین خواص مکانیکی پارچه استحکام آن می باشد . همچنین ازدیاد طول تا حد پارگی نیز حائز اهمیت می باشد عوامل مختلف روی این خواص می توانند تاثیر گذار باشند از جمله جنس نخ ، نمره نخ ، نوع نخ و تراکم و غیره .

در این پروژه کارهای ذیل انجام شده است :

- بررسی استحکام پارچه های تاری پودی با تراکم های تار و پود مختلف در سه طرح بافت متفاوت

- بررسی ازدیاد طول تا حد پارگی پارچه های تاری پودی با تراکم های تار و پود مختلف در سه طرح بافت متفاوت

- مقایسه بین استحکام و ازدیاد طول تا حد پارگی در پارچه های مورد آزمایش

آزمایشات بر روی پارچه ها با تراکم های مختلف انجام شد و نتایج بدست آمده مورد تجزیه و تحلیل قرار گرفت که در نهایت در مورد استحکام پارچه مبانی تئوری و نتایج عملی مورد انطباق قرار گرفت ولی در مورد ازدیاد طول روند خاصی ملاحظه نشد و به نظر می رسد بررسی بیشتر و دقیق تری مورد نیاز می باشد .

نتایج حاصله عبارتند از :

- در مورد تاثیر تراکم تار بر روی استحکام در جهت تار و تراکم پود بر روی استحکام در جهت پود می توان پیش بینی نمود با n برابر شدن تراکم هم در تار و هم در پود استحکام نیز n برابر خواهد شد .

- همچنین بین طرح بافتهای سرژه ، تافته و ترکیبی از سرژه و تافته ، طرح سرژه دارای بیشترین استحکام و تافته دارای کمترین استحکام می باشد .

- با تغییر عرض نمونه های آزمایش شده با تراکم های تار مختلف به نحوی که تعداد سرنخ نمونه ها مساوی باشد تغییر خاصی از لحاظ آماری روی استحکام ایجاد نمی شود ولی از لحاظ عددی با افزایش تراکم تار و کاهش عرضی ، استحکام بایستی کاهش یابد .

فصل اول


تعاریف و کلیات

1-1- تنش

تنش در هر مقطع به صورت نسبت نیرو وارده به آن مقطع به سطح آن تعریف می شود :

(1-1)

که تنش ، p نیروی وارده و A سطح مقطع مورد نظر می باشد .

2-1- کرنش

کرنش یا ازدیاد طول عبارت است از نسبت تغییر طول به طول اولیه یک ماده .

(2-1)

که کرنش ، تغییر طول و L طول اولیه می باشد .

3-1- نمودار تنش – کرنش

خروجی اصلی دستگاههائی که آزمایشات کشش توسط آنها انجام می شود این نمودار می باشد .

البته این نمودار برای مواد مختلف بسیار متنوع و متفاوت می باشد . ضمنا آزمایشات متعدد کشش بر روی یک نوع ماده ، ممکن است و به نتایج و نمودارهای مختلفی منجر شود که این تفاوت به خاطر عوامل موثر بر روی آزمایش از جمله دمای آزمایش و سرعت بارگذاری می باشد .

مواد مختلف با توجه به نمودار تنش – کرنش به دو گروه عمده مواد نرم و مواد شکننده یا ترد تقسیم بندی می شوند .

در نمودار مربوط به مواد نرم ابتدا یک خط مستقیم با شیب تند وجود دارد سپس به مرحله تنش بحرانی ( ) می رسد که تسلیم از آنجا آغاز می شود . سپس تنش نهایی ( ) در اثر حداکثر بار اعمال شده بر روی نمونه به وجود می آید . تنش گسیختن ( ) تنشی است که در زمان گسیختن یا بریدن بوجود می آید و همان طور که در شکل 1-1 مشخص می باشد در مواد نرم قبل از گسیخته شدن یک مرحله باریک شدن ماده نیز وجود دارد .

شکل 1-1. منحنی تنش کرنش آلومینیوم]1[

در مواد ترد و شکننده مثل چدن گسیختن یک باره و بدون مشاهده تفاوت در نرخ ازدیاد طول رخ می دهد . این موضوع در شکل 2-1 مشخص است .

شکل 2-1. منحنی تنش کرنش مواد‌ترد]1[

4-1- مدول الاستیسه (مدول اولیه)

رابطه بین تنش ( ) و کرنش ( ) به صورت زیر می باشد

(3-1)

E ، مدول الاستیسم نامیده می شود .

اکثرا طراحی سازه های مهندسی به گونه ای است که تغییر شکل در آنها نسبتا کم باشد به همین دلیل همواره بخش خطی نمودار تنش – کرنش را در نظر می گیرند . رابطه (3-1) با توجه به همین موضوع عنوان می شود .

5-1- رفتار الاستیک – پلاستیک ماده

اگر در یک آزمون کششی ، کرنش های ایجاد شده در اثر بارگذاری پس از برداشتن بار از بین بروند ماده آزمایش شده را الاستیک گویند و در مواد پلاستیک پس از برداشت بار بر روی جسم مقدار کرنش به صفر بر نمی گردد و مقداری از این تغییر در جسم باقی می ماند .

6-1- نسبت پواسن

نسبت کرنش عرضی به کرنش طولی یا محوری به صورت قدر مطلق نسبت پواسن نامیده می شود .

(4-1)

7-1- انرژی کرنشی

کار انجام شده از طریق اعمال بار P بر یک جسم و ازدیاد طول آرام آن باید موجب افزایش نوعی انرژی در رابطه با تغییر شکل جسم گردد که این انرژی را انرژی کرنشی گویند . این موضوع در شکل 3-1 نشان داده شده است .

شکل 3-1. سطح زیر منحنی تنش – کرنش]1[

(5-1)

که u انرژی کرنشی و p نیروی وارده می باشد .

8-1- منحنی تنش – کرنش پارچه

مقدار استحکام مورد نیاز نخ یا پارچه به مصرف نهایی آن بستگی دارد . این که نخ یا منسوخ مورد نظر در صنعت استفاده می شود یا به عنوان پوشاک به کار می رود نقش تعیین کننده ای دارد.

همچنین خواص یک ساختار نساجی مثل نخ یا پارچه به ارتباطات درونی و پیچیده بین آرایش الیاف و خواص آنها بستگی دارد .

تمام مفاهیمی که در بخش های قبلی عنوان شد ، برای منسوجات نیز قابل تعریف و تقسیم می باشد اما در مورد منسوجات به جهت افزایش دقت در اندازه گیری‌ها تعاریف جدیدی از جمله استحکام کششی و استحکام پارگی نیز ارائه شده است .

9-1- استحکام کششی :

ماکزیمم نیروی ثبت شده در آزمایش کشش در مورد یک نمونه تا نقطه پاره شدن می باشد . این نیرو به صورت مستقیم با سطح مقطع نمونه متناسب می باشد .

10-1- استحکام تا حد پارگی :

همان طور که در شکل 4-1 مشاهده می شود مقدار استحکام در لحظه پارگی . کمتر از ماکزیمم استحکام می باشد . این مقدار نیرو در لحظه پارگی به عنوان استحکام تا حد پارگی معرفی می شود . البته مقدار نیروی پارگی می تواند بعد از ماکزیمم نیروی تنشی نیز ادامه پیدا کند .

شکل 4-1. یک منحنی نیرو-ازدیادطول برای مواد نساجی]2[

11-1- روش های مختلف تست کشش :

بدیهی است منحنی نیرو – ازدیاد طول برای هر نمونه را می توان با تحت کشش قرار دادن نمونه و اندازه گیری نیرو برای هر مقدار طول نمونه به دست آورد . از آنجا که ازدیاد طول نمونه و نقطه پارگی نمونه های پلیمری بستگی به زمان آزمایش دارد ، طریقه اعمال ازدیاد طول یا همان کشش عامل بسیار مهمی در نتایج بدست آمده می باشد .

به طور کلی سه نوع دستگاه تست کشش وجود دارد .

1- دستگاههائی که با نرخ ثابت ازدیاد طول کار می کنند .

C.R.E یاConstant Rate af Elongadion

2- دستگاههایی که با نرخ ثابت ازدیاد نیرو کار می کنند :

C.R.L یاConstant Rate af loading

3- دستگاههائی که با نرخ ثابت تراورس کار می کنند :

C.R.T یاConstant Rate af Travers

12-1- روش های اندازه گیری استحکام پارچه :

از آنجا که استحکام پارچه به عنوان یک منسوخ ، مقاومت آن در برابر نیروی کششی می باشد می توان برای اندازه گیری این پارامتر از هر سه روش تست کششی که قبلا عنوان شد استفاده نمود .

13-1- روش نمونه گیری استاندارد پارچه :

یکی از مهمترین پارامترهای تاثیر گذار بر روی نتایج آزمایشات نحوه نمونه گیری از پارچه مورد نظر می باشد که طبیعتا بایستی استانداردهائی را مد نظر قرار داد :

1- جهت تار و پود در پارچه تعیین گردد .

2- نمونه ها نباید از عرض پارچه به حاشیه نزدیک تر باشند .

3- نمونه ها را می توان در امتداد خطی مورب نسبت به قطر انتخاب نمود .

4- در انتخاب و برداشت نمونه باید دقت شود نمونه های تاری و پودی دارای تار یا پود مشترک نباشند ولی در صورت محدود بودن پارچه می توان نمونه ها را طوری انتخاب نمود که تعدادی تار یا پود مشترک باشند .

بهتر است ابتدا پارچه روی سطح صاف پهن شود . سپس تقسیمات لازم صورت گیرد و سپس با استفاده از قیچی نمونه ها به دقت از پارچه جدا شوند.

فصل دوم


روش‌های مطالعه خواص مکانیکی پارچه

1-2- مقدمه

ارتباط بین خواص مکانیکی نخ و پارچه و پیش‌بینی رفتار مکانیکی پارچه با توجه به دانستن خواص مکانیکی نخ، دارای اهمیت بسیار زیادی می‌باشد. به عنوان مثال در صورتی که رابطه‌ای بین استحکام نخ و استحکام پارچه تعریف شود، می‌توان در صورت در دسترس نبودن شرایط بافت قبل از تولید پارچه، از روی خواص مکانیکی نخ، خواص مکانیکی پارچه را پیش‌بینی نمود.

تا‌کنون تلاش‌های بسیار زیادی برای پیش‌بینی خواص مکانیکی پارچه‌ها انجام شده است. تکنیک‌های ساخت پارچه نیز تاکنون پیشرفت‌های زیادی کرده است،اما با همه‌این اوصاف هنوز دانش بشر از پیش بینی رفتار مکانیکی پارچه، خیلی محدود است]3[

در دهه‌های گذشته پارچه‌ها علاوه‌بر کاربرد لباسی، مصارف گوناگون صنعتی نیز پیدا کرده‌اند. بنابراین از آنجایی که هنگام استفاده از انواع منسوجات، خصوصا موارد صنعتی آن، استحکام خاصیت بسیار مهمی‌می‌باشد؛ اهمیت مطالعه رفتار مکانیکی منسوجات مشخص می‌شود.

یکی از اهداف در مطالعه هندسه پارچه‌ها نیز رسیدن به یکنواختی و دقت بیشتر در محاسبات می‌باشد. جدا از کاهش اشتباهات، استفاده از امکاناتی که استانداردها در اختیار می‌گذارند مزیت بزرگی می‌باشد. همچنین استفاده از روش‌هایی که هم برای نخ‌ها و هم برای ساختارهای پیچیده پارچه قابل استفاده باشد همواره مورد توجه می‌باشد ]4[

روش‌هایی که برای مطالعه ساختار و خواص ابعادی پارچه‌ها و خواص مکانیکی آن‌ها مورد استفاده قرار گرفته است را به طور کلی می‌توان به شش دسته تقسیم کرد:

1- تحلیل هندسی

2- مکانیکی

3- هندسی-مکانیکی

4- پردازش تصویر

5- تصویربرداری

6- استفاده از مدل‌های ریاضی

روش‌های تحلیل هندسی شامل تجویز نسخه‌ای از فرم هندسی برای ساختار ویژه‌ای از پارچه می‌باشد. در حالی که در روش مکانیکی تلاش بر‌این است که هندسه و خواص ساختاری پارچه از مشخصات توپولوژی و خواص مکانیکی اجزای سازنده اش (الیاف، نخ و ...) به‌دست آید. البته بین‌این دو مشی مرزبندی دقیقی وجود ندارد؛ به طوری که بسیاری از مواردی که مدل مکانیکی تلقی می‌شوند شامل عناصر هندسی، و موارد هندسی نیز به‌ایده‌های مکانیکی وابسته هستند. مزیت مشی تحلیل‌های هندسی آن است که مدل‌های ساختاری به‌دست آمده ساده‌تر هستند و به محاسبات ساده‌ای نیز احتیاج دارند. در مقابل اطلاعات به‌دست آمده نیز محدود می‌باشد. در حالی که درمدل‌های مکانیکی اگر فرض‌های انجام شده به اندازه کافی به واقعیت نزدیک باشند، اطلاعات بیشتری در اختیار قرار می‌دهند؛ البته در‌این حالت پیچیدگی‌های موجود و استفاده از کامپیوتر هزینه‌ها را افزایش می‌دهند. روش‌های هندسی-مکانیکی نیز شامل استفاده از روشی می‌باشد که هر دو تحلیل هندسی و مکانیکی به طور نسبتا برابری درآن استفاده شده باشد. ]4[

2-2- تعیین مدل هندسی

هندسه پارچه‌ها تاثیر بسیاری روی رفتار آن‌ها دارد. به عنوان مثال، وقتی‌که پارچه در جهت تار کشیده می‌شود، موج پود افزایش می‌یابد. اهمیت مطالعه هندسه پارچه‌ها به خاطر موارد ذیل می‌تواند مهم باشد:

1- پیش‌بینی ابعاد پارچه‌ای که می‌بایست بافته شود وخواص ابعادی آن.

2- به ‌دست آوردن ارتباط بین پارامترهای ابعادی پارچه مثل موج و زاویه بافت.

3- پیش‌بینی خواص مکانیکی با‌ترکیب هندسه پارچه و خواص نخ مثل مدول یانگ، سختی خمشی و سختی پیچشی.

4- کمک برای فهم کارآیی پارچه‌ها مثل زیر دست و خواص سطحی آن. ]5[

3-2- مدل هندسیPeirce

تعیین مدل هندسی روشی نسبتا ساده جهت بررسی رفتار مکانیکی پارچه‌ها می‌باشد. مدل هندسی مشهور Peirce نیز نخستین روشی بود که بر‌این اساس ارائه شد. وی توانست با فرض یک پارچه بافته شده به عنوان یک قطعه هندسی کاملا ‌ایده‌آل، رفتار تغییر شکل پارچه را تحت بارگذاری از خارج توضیح بدهد ]4[

از آنجایی که مدل Peirce‌ایده‌آل می‌باشد، وی فرض‌های زیر را در نظر گرفت: ]6[

1- سطح مقطع نخ دایره‌ای فرض می‌شود.

2- نخ غیر قابل انبساط است.

3- نخ غیر قابل فشرده شدن است.

4- در نقاط تماس لغزندگی وجود ندارد.

چنان‌که در شکل 1-2 مشاهده می‌شود وی یک واحد ساختمانی بافت تافته را به صورت زیر در نظر گرفت:

شکل 1-2. واحد ساختمانی بافت تافته ]6[

اندیس یک مربوط به تار و اندیس دو مربوط به پود می‌باشد. پارامتر‌ها برای اندیس یک به شرح زیر می‌باشند:

قطر نخ تار و پود

طول نخ تار و پود در واحد بافت

زاویه موج تار و پود

فاصله جابجایی تارها و پودها

فاصله دو تار و پود

(1-2)

ضخامت‌ در جهت تار و پود به صورت زیر است:

(2-2)

(3-2)

موج تار و پود، و ، نیز به صورت زیر تعریف شده است:

(4-2)

(5-2)

همچنین با استفاده ازروابط هندسی برای این مدل ‌ایده‌آل، روابط خلاصه شده بین فاصله جابجایی و موج و فواصل بین تارها یا پود‌ها و همچنین زاویه موج و موج به صورت زیر می‌باشد:

(6-2)

(7-2)

(8-2)

(9-2)

حین تغییرات ابعادی در پارچه نیز، ممکن است نخ‌های تار یا پود خیلی به هم نزدیک شوند؛ به طوری که زاویه انحنای نخ تار یا پود به 90 درجه برسد. به‌این حالت فشردگی اطلاق می‌شود. در محاسباتی که در حالت کشش پارچه یا جمع‌شدگی آن می‌باشد، پارچه در‌این حالت مورد بحث قرار می‌گیرد.

شکل 2-2. حالت فشردگی ]6[

در‌این حالت رابطه بین فاصله تار و فاصله پود ومجموع قطر تار و پود به صورت زیر به‌دست می‌آید:

(10-2)

(11-2)

طبق تعریف داریم:

(12-2)

پس

(13-2)

زاویه موج نیز در‌این حالت از روابط زیر به‌دست می‌آید:

(14-2)

(15-2)

حال اگر پارچه از یک طرف تحت کشش قرار گیرد، در یک سمت کشیدگی و در سمت دیگر فشردگی رخ می‌دهد و می‌توان با استفاده از روابط 10-2 تا 13-2 حداکثرکشیدگی در یک سمت و حداکثر انقباض در سمت دیگر پارچه را تعیین کرد:

(16-2)

علاوه بر به‌دست آوردن‌این روابط تئوری، Peirce آزمایشات عملی نیز انجام داده است تا به میزان دقت یافته‌هایش پی ببرد. یکی از آزمایشات وی بررسی تغییرات ابعادی در پارچه‌ها می‌باشد.

4-2- آزمایش تغییرات ابعادی در پارچه کرباس[1]:

به‌این منظور وی نمونه‌های پارچه‌ با‌تراکم تار و پود و نمره و موج مشخص را تحت شستشوی استاندارد قرار داد و موج و نمره جدید نخ‌ها را نیز محاسبه کرد. سپس نمونه‌ها را در حالت خیس تحت بارهای متفاوت قرار داد و بعد آن‌ها را خشک کرد. در مرحله بعد ابعاد پارچه و موج نخ‌ها را اندازه‌گیری کرد. سپس سعی کرد با استفاده از مقادیر به‌دست آمده از آزمایش، دیگر پارامترهای ساختمانی پارچه همچون ضخامت آن را اندازه‌گیری کند.

وی آزمایشات دیگری نیز مثل آزمایش کشش و ازدیاد طول روی پارچه کرباس ، انجام داده است. اما در بعضی از موارد داده‌های متفاوت از دقت انطباق خوبی برخوردار نمی‌باشند که دلیل آن ایده‌آل بودن مدل می‌باشد و می‌بایست تحلیل‌ها بعد از بررسی پارامترهای متفاوت یک پارچه صورت بگیرد.

5-2- مدل هندسی با مقطع بیضوی

در مرحله بعد pierce برای این‌که مدلش را به واقعیت نزدیک‌تر کند مدل هندسی دیگری را در نظر گرفت که بر اساس آن، چنان‌که در شکل3-2 دیده می‌شود، سطح مقطع نخ‌ها به صورت بیضوی در نظر گرفته شده است. اما به اعتقاد پیرس چنین مدلی بسیار پیچیده خواهد بود. ]5[

شکل3-2. هندسه پارچه‌های بافته شده تافته با نخ‌های با مقطع بیضی]5[

6-2- مدل هندسی پیرس با مقطع‌های نخ مسطح شده

بنابراین وی مدل دیگری را در نظر گرفت که بر اساس آن مقطع نخ‌ها دایروی می‌باشند ولی قطر آن‌ها برابر قطر کوچک بیضی‌ها در مدل بیضوی، می‌باشد.‌این مدل در شکل4-2 نشان داده شده است.

شکل 4-2. هندسه پارچه تافته با نخ مسطح شده ]5[

این مدل شاید برای پارچه‌های با ساختار باز کاربرد داشته باشد. اما برای حالت فشردگی ‌پارچه مناسب نیست

تعیین مدل مکانیکی

7-2- روش انرژی Hearl , Shanahan

هدف از‌این مطالعه، شرح یک مشی یکنواخت برای تحلیل مکانیکی آن دسته از مدل‌های هندسی می‌باشدکه در آن‌ها برای پارچه یک سلول واحد تکراری در نظر گرفته می‌شود]4[

فرض‌های در نظر گرفته شده نیز به قرار زیر است:

1- تغییرات انرژی درون اجزاء نخ‌ها نادیده گرفته می‌شود.

2- با تعمیم‌این روش بتوان تغییرات انرژی درون و بین نخ‌ها و الیاف را وارد تحلیل‌ها نمود.

3- حجم نخ ثابت در نظر گرفته می‌شود.

در‌این حالت قسمتی از پارچه به شکل چهارگوش و با ابعاد *، مطابق شکل 9-2 در نظر گرفته می‌شود که تحت بارگذاری دو محوری با نیروهای و قرار گرفته باشد.

شکل 9-2. پارچه به صورت چهارگوش تحت تنش دو محوری]4[

فرض شده است که یک مدل هندسی از ساختار پارچه وجود دارد که بتوان معادله زیر را برای نیروهای وارده نوشت:

(17-2)

و می‌تواند به صورت تابع زیر نیز بیان شود:

(18-2)

که یک متغیر مستقل می‌باشد. در‌این‌جا به طور ضمنی فرض شده است که پارچه به صورت مکانیزم نیرو-تحمل،تحت عمل قرار می گیرد که هیچ انرژی الاستیکی در آن وجود ندارد. یک مثال از چنین ساختار‌ایده‌آلی، پارچه ساخته شده از نخ‌های انعطاف‌پذیر و غیرقابل کشش می‌باشد.

انرژی وابسته به سیستم، انرژی پتانسیل نیروهای به‌کار برده شده و خواهد بود.

به طور قرار دادی فرض شده است که در نقطه معادله به صورت زیر است:

(19-2)

برای به‌دست آوردن مینیمم انرژی نیز :

(20-2)

(21-2)

بنابراین رفتار نیرو-تغییر شکل پارچه تحت‌این شرایط با عبارت مشتق مشخص می‌شود.

این مشی را می‌توان برای ارزیابی کارهای انجام شده قبلی نیز به‌کار برد مثلا برای هندسه ساختاری پیرس روابط زیر موجود است:

(22-2)

که ابعاد یک تکرار طرح هستند. و بقیه پارامترها نیز در شکل1-2 مشخص می‌باشند.

پنج معادله وشش مجهول وجود دارد که با فرض ثابت بودن ومقدار‌دهی به تمام پارامترهای شامل به‌دست می‌آید.

با مشتق‌گیری از نسبت به :

(23-2)

و با استفاده از معادله 21-2 رابطه زیر به‌دست می‌آید:

(24-2)

‌این مشابه نتیجه‌ای است که می‌تواند از تعادل نیروهای ناشی از کشش به‌دست آید. ‌این یک معادله اضافی است که با استفاده از آن معادلات 22-2، تحت نیروی به‌کار برده شده محاسبه می‌شوند یا‌این‌که از هندسه داده شده، نسبت نیروها تعیین می‌شوند. اگر و همچنین داده شده باشند دیگر مقادیر هندسی مخصوصا می توانند از روش‌های عددی و یا با استفاده از گراف تعیین شوند.

در‌این مدل، زمانی که پارچه تحت کشش دو محوری به‌ترتیب در دو جهت تار و پود قرار می‌گیرد، از خود افزایش طول نشان می‌دهد تا زمانی که انرژی باقی‌مانده در آن به مقدار حداقل برسد. مطابق آن، تعادل نیروها در تمام جهت‌ها بوجود می‌آید. در صورتی که حجم نخ‌ها بعد از تغییر شکل ثابت فرض شود روابط زیر حاکم می‌شود:

(25-2)

و مربوط به حالت ابتدایی نخ ومشتقات انرژی کرنشی نیز به صورت زیر می باشند:

(26-2)

که سختی خمشی نخ و ثابت فنر می باشدمی‌باشد ]8[

با حل معادلات انرژی می‌توان پارامترهای نامعلوم را به دست آورد.

(27-2)

شکل 10-2 تاثیر سختی خمشی را روی منحنی‌های نیرو-ازدیاد طول نشان می دهد. مشخصات پارامترهای مختلف به صورت زیر است:

,,, متغیر است. نخ‌ها غیر قابل کشش ومقادیر مختلف سختی خمشی نیز:,, می‌باشد.

شکل10-2. تاثیر سختی خمشی روی منحنی نیرو- ازدیاد طول]7[

شکل 11-2 نیز تاثیر قابلیت کشیده شدن نخ‌های درون پارچه را، روی منحنی نیرو-ازدیاد طول نخ نشان می دهد. (منحنی‌های ).

شکل11-2. تاثیر قابلیت کشیده شدن روی منحنی نیرو- ازدیاد طول]7[

در این‌جا، مقایسه‌ای بین‌این روش و روش محاسبه دقیق انجام شده است. در‌این‌مورد،,,,متغیر است.. برای منحنی‌های ثابت فنر یعنی غیر قابل کشیدن است. برای برابر و برای برابر می‌باشد.

8-2- اصلاح مدل ساختمانی پیرس

بررسی‌های انجام شده در‌این مدل بر مبنای مدل هندسی Pierce می‌باشد. از آنجایی که مدل پیرس یک حالت‌ایده‌آل از ساختار پارچه می‌باشد، بنابراین طبیعی است که نتایج تئوری و عملی از بررسی پارامترهای مکانیکی پارچه نزدیکی زیادی با هم نداشته باشند. به عبارت دیگر خطای اندازه‌گیری قطر نخ سبب ‌ایجاد مشکل در پیش‌گویی دقیق خواص مکانیکی پارچه شده است]8[

در‌این مدل، سعی شده است که با نزدیک کردن فرض تئوری پیرس در مورد قطر نخ به واقعیت، هم‌خوانی بهتری برای نتایج تئوری و عملی به‌دست آید. از آنجایی که سعی شده است که مدل برای چند نوع طرح بافت قابل استفاده ‌باشد، اگر نخ‌های تار و پود در نقاط در هم رفتن کاملا در تماس با هم باشند، روابط (28-2) به صورت زیر خواهد بود:


بررسی رفتار عمومی برشی پارچه های تاری پودی

پارچه های نساجی در هنگام استفاده های معمول و کاربرد های عملی ، مثل پوشش لباس ، مصارف خانگی و مصارف صنعتی ، تحت یک سری از تغییر شکل های پیچیده قرار می گیرد این تغییر شکل ها شامل افت پارچه ، چروک یا تا خوردگی ، کیفیت زیر دست، خمش پذیری و دیگر اثراتی است که مرتبط با اصول زیبایی پارچه می باشند
دسته بندی نساجی
فرمت فایل doc
حجم فایل 3631 کیلو بایت
تعداد صفحات فایل 123
بررسی رفتار عمومی برشی پارچه های تاری پودی

فروشنده فایل

کد کاربری 8044

فهرست مطالب

عنوان مطلب صفحه

مقدمه ...................................... 1

فصل اول : رفتار عمومی برشی پارچه های تاری پودی 4

1-1- تغییر شکلهای پیچیده پارچه و معرفی پدیده برش .... 5

1-2- تعریف برش پارچه (Shearing)............................. 7

1-2-1- طبیعت برش ..................... 7

1-2-2- مسأله عملی برش .................. 16

1-3- منحنی برش پارچه 20

1-3-1- منحنی رفت و برگشتی برش ( دو طرفه ) 21

1-3-2- منحنی برش یکطرفه ............. 25

1-4- خصوصیات برش پارچه ......................................... 28

1-4-1- رفتار برش پارچه ............... 28

1-4-2 رابطه بین تغییر شکل برشی و خمشی پارچه 36

فصل دوم : روشهای آزمایشی برش پارچه های تاری پودی 38

2-1- مقدمه.................................. 39

2-2- روش آزمایشی Cusick ................. 44

2-3- روش آزمایشی KES (سیتم ارزیابی کاواباتا) 49

2-3-1- مقدمه........................... 49

2-3-2- تاریخچه پیدایش دستگاه KES .... 50

2-3-3- معرفی و شناخت آزمایش برش توسط دستگاه KES 52

2-4- روش آنالیز تصویری .................. 59

فصل سوم : استفاده از روش آنالیز المان محدود

در بررسی تغییر فرم برشی پارچه تاری پودی .. 66

3-1- مقدمه ای بر تجزیه و تحلیل تغییر شکل های پیچیده پارچه ............................................. 67

3-1-1- ساختمان پارچه و فرض پیوستگی آن. 68

3-1-2- سیمای تغییر شکل پارچه......... 70

3-1-3- اندازه گیری کرنش............... 72

3-1-4- اندازه گیری تنش............... 74

3-1-5- روابط تنش – کرنش.............. 75

3-1-6- حالتهای خاص.................... 76

3-1-7- بررسی اعتبار روابط ............ 78

3-2- روشهای المان محدود در مکانیک نساجی 80

3-2-1- مقدمه........................... 80

3-2-2- اصول آنالیز المان محدود ( با استفاده از نتایج آزمایش KES)............................... 81

3-2-3- محاسبات تئوریک آنالیز برش ... 83

3-2-3-1- تغییر شکل برش پارچه ....... 83

3-2-3-2- توزیع کرنش برشی .......... 84

3-2-3-3- توزیع تنش برشی ............ 86

3-2-3-4- عناصر ثابت در معادله....... 88

3-2-3-5- مدول برشی.................. 89

3-2-3-6- روش محاسبة مدول برشی (C33) با استفاده از مدول کششی (C22 ).................................................. 91

فصل چهارم : خصوصیات برشی پارچه های تاری پودی در جهات مختلف پارچه 92

4-1- مقدمه.................................. 93

4-2- مدلسازی برای خصوصیات برشی غیرهمگون (آنیزوتروپیک ) 95

4-3- نمودارهای قطبی مدل برشی ........... 97

4-3-1- صور عمومی‌.................... 97

4-3-2- اثردانسیتة بافت بر روی برش پارچه ..... 100

4-4- ارتباط بین سختی برشی و هیسترسیس در جهات مختلف پارچه .................................................. 102

منابع و مراجع .................................... 105

فهرست اشکال

عنوان شکل صفحه

شکل 1- نمایه عمومی برش ............... 8

شکل 2- برش ساده سازی شده با اعمال نیروی کششی و نمایه شماتیک
نیروهای موثر در پدیده برش پارچه تاری پودی 12

شکل 3- مدل شبکه ای ................... 16

شکل 4- دستگاه آزمایش گر برشی استفاده شده توسط ‌‌Treloar ( 1956) ، نیروهای موثر در آزمایش برش ......... 19

شکل 5- منحنی عمومی برش پارچه ( بعد از Cusick 1961 ) 22

شکل 6- منحنی تنش – کرنش پارچه های تاری پودی در حین تغییر شکل برشی...................................... 27

شکل 7- منحنی های برش بدست آمده توسط Treloar (1965) ، برای پارچه های پنبه ای با نمونه مربعی شکل . 29

شکل 8- منحنی های برش به دست آمده توسط Treloar (1965) برای پارچه های پنبه ای با نمونه به شکل متوازی الاضلاع 30

شکل 9- منحنی های برشی بدست آمده توسط Treloar (1965) . برای پارچه ویسکوزریون با نمونه متوازی الاضلاع 31

شکل 10- منحنی های برش به دست آمده توسط Cusick (1961) . مقایسه ای بین پارچه های فاستونی ، ریونی و پنبه ای 32

شکل 11- منحنی های برش به دست آمده توسط Cusick (1961) . برای پارچه سرژه ای ....................... 32

شکل 12- مدل ارائه شده برای تشریح رفتار برشی پارچه 33

شکل 13- منحنی حاصل از مدل ارائه شده برای تشریح رفتار برش پارچه ................................ 33

شکل 14- مقایسه مدل ها با مقادیر مختلف 36

شکل 15- نمای کلی برش پارچه............ 39

شکل 16- تغییر فرم زاویه ای و طولی .... 40

شکل 17- اصول آزمایش های برش .......... 41

شکل 18- نواحی تغییر شکل یافته پارچه تحت اثر نیروی کششی در جهت اریب پارچه.................................................. 43

شکل 19- دیاگرام نسبت بین نیروی کششی P و ازدیاد طول در نمونه بریده شده در جهت اریب (45 درجه ) 44

شکل 20- مکانیزم ابتدایی دستگاه برش پیشنهادی Morner & Olofssom (1957) 47

شکل 21- فرم ابتدائی برش پارچه......... 47

شکل 22- مکانیزم ابتدایی دستگاه برش یشنهادی Cusick (1961) 47

شکل 23- نمونه برش یافته با نمایش زوایا و نیروهای برشی 47

شکل 24- نمایش کشش در پدپده برش تحت تاثیر کوپل های برشی و وزن فک پایینی 48

شکل 25- شماتیک دستگاه آزمایشگر KES ... 54

شکل 26- دیاگرام و اصول ارز یابی برشی KES 55

شکل 27- شیوه عملکرد دستگاه آزمایشگر برشی KES 56

شکل 28- روش آزمایش مرسوم برای تعیین مدول برشی مواد سخت 57

شکل 29- نیروهای اعمالی روی نمونه پارچه در دستگاه آزمایشگر برشی KES ............................................. 58

شکل 30- نحوه چیدمان ابزار آزمایش برای آنالیز تصویری 60

شکل 31- تصاویر دیجیتالی ثبت شده از نمونه کشیده شده 61

شکل 32- تغییرات gray-scale در تصویر دیجیتالی نمونه کشیده شده ...................................... 63

شکل 33- یک سلول بافت پارچه تاری پودی در نمایی بزرگ شده 64

شکل 34- برآیند های نیروی تنش و کوپل های نیروی تنش 74

شکل 35- مدل المان محدود برای جسم پیوسته دو بعدی 81

شکل 36- نمونه پارچه تغییر فرم داده شده ، و ارز یابی شده توسط آنالیز المان محدود ............................................ 83

شکل 37- تغییر تنش برشی در طول جهت کوتاه تر نمونه 87

شکل 38- تغییر تنش برشی در طول جهت بزرگتر نمونه 87

شکل 39- نمودار های عمومی قطبی برای سختی برشی پارچه ( G ) ...................................... 98

شکل 40- نمودارهای عمومی قطبی برای هیسترسیس برشی پارچه ( 2HG و 2HG5 ) 99

شکل 41- نمودارهای قطبی پارامتر های برش تحت تاثیر دانسیته بافت ................................. 101

شکل 42- ارتباط بین سختی و هیسترسیس برشی در جهت های مختلف پارچه های تاری پودی ............................................. 103


مقدمه

پارچه های نساجی در هنگام استفاده های معمول و کاربرد های عملی ، مثل پوشش لباس ، مصارف خانگی و مصارف صنعتی ، تحت یک سری از تغییر شکل های پیچیده قرار می گیرد. این تغییر شکل ها شامل : افت پارچه ، چروک یا تا خوردگی ، کیفیت زیر دست، خمش پذیری و دیگر اثراتی است که مرتبط با اصول زیبایی پارچه
می باشند .

پدیده برش، یکی از همین تغییر شکل های پیچیده است که در سطح پارچه اتفاق
می افتد. به نظر می رسد که به این خصوصیت فیزیکی – مکانیکی پارچه به دلیل آنکه در ظاهر دیده نمی شود ، در قیاس با دیگر فرم های تغییر شکل پارچه ، کمتر توجه شده است . در حالی که باید اذعان نمود که قابلیت منحصر به فرد پارچه برای پوشش سطوح سه بعدی ، در گرو همین پدیده می باشد .

توانایی پارچه برای پذیرش تغییر شکل برشی ، یکی از ملزوماتی است که پارچه
می تواند به عنوان پوشاک ، بر بدن انسان انطباق داشته باشد ، بدون آنکه ایجاد احساس ناراحتی کند پارچه به عنوان جسمی جدایی ناپذیر از نیاز های بشری مورد استفاده های گوناگون قرار می گیرد ، بدون آنکه اغلب مصرف کنندگان – و یا حتی برخی کارشناسان علم نساجی – اطلاع داشته باشند که کاربرد های ویژه پارچه در قیاس با دیگر مواد جهان پیرامون ، به پدیده برش مربوط است . رفتار برشی پارچه
– با توجه به منابع موجود – نسبت به دیگر خصوصیات و رفتار های پارچه کمتر مورد ارزیابی قرار گرفته است و البته تا کنون هیچ استاندارد اجرائی برای آن تعیین نگردیده است .

منظور از انتخاب این موضوع برای سمینار کارشناسی ارشد اینجانب ، آشنایی شنونده یا خواننده با مفاهیم اساسی برش ، این پدیده مهم فیزیکی مکانیکی پارچه و دخیل در کاربرد های معمول و روزمره پارچه می باشد .

برای نیل به این هدف ، در فصل اول مفهوم برش پارچه تاری پودی ، رفتار و منحنی مربوطه از نگاهی ساده در چند بخش مختلف به تفصیل تشریح می شود و در ادامه ارتباط برش با تغییر شکل خمشی پارچه ، روشن می گردد .

در فصل دوم ، به روش های آزمایشی مهمی که تا کنون برای ارزیابی خصوصیات برشی پارچه های تاری پودی در منابع ذکر شده اند ، پرداخته می شود ؛ که از این دست می توان به دستگاه آزمایش گر برشی Kawabata اشاره نمود که هم اکنون به عنوان روش پیشرو برای تعیین مقادیر مختلف برش ، استفاده می گردد . همچنین در این فصل شیوه آنالیز تصویری برش پارچه که در سال 2005 ، به شیوه عکس برداری از پروسه برش مقادیر آن را ارزیابی می نماید ، نشان داده می شود .

در فصل سوم تغییر شکل برشی پارچه به وسیله روش تجزیه و تحلیل المان محدود (Finite Element Analysis ) بررسی می شود و مقادیر مختلف برش از جمله تنش برشی ، کرنش برشی و روابط آنها به وسیله محاسبات تئوریک آنالیزی بیان
می گردد .

در فصل چهارم مدل ریاضی ارائه شده برای خصوصیات برشی ذکر می گردد ؛ تا از طریق آن و نمودار های قطبی حاصله ، خصوصیات برشی پارچه تاری پودی در
جهت های مختلف تبیین گردد .


فصل اول

رفتار عمومی برشی پارچه های تاری – پودی

1-1- تغییر شکلهای پیچیده پارچه و معرفی پدیده برش

پارچه های نساجی در هنگام استفاده و کاربردهای عملی ، تحت یکسری تغییرشکلهای پیچیده قرار می گیرند که این تغییر شکلها شامل افت پارچه ( Drape) ، زیر دست پارچه (Handle ) ، چروک شدن (Wrinkle ) یا تا خوردگی (Crease) و دیگر اثراتی که مرتبط با زیبایی پارچه است، می باشد. واضح است که مصرف کنندگان پارچه ها ، بازرگانان و یا تولید کنندگان منسوجات ، این سری از کیفیتهای پارچه را بصورت ذهنی و با تجربه عملی ارزیابی می کنند، اما اگر یک کارشناس نساجی بخواهد خصوصیات فیزیکی – مکانیکی و کیفیتی پارچه را مورد مطالعه قرار دهد
می بایست این تغییر شکلهای پیچیده را بطور عملی بررسی نماید در واقع مطالعه مکانیک ساختمانی پارچه ، تمامی این موارد را در بر می گیرد. ]1[

یکی از خصوصیات بارز و مهم منسوجات ، خصوصیات خمش پذیری و انعطاف آنها در مقایسه با دیگر مواد در جهان پیرامون می باشد این خصوصیت ویژه پارچه ، ناشی از مواد تشکیل دهنده آن ، یعنی الیاف می باشد بطوریکه وقتی پارچه خم می شود ، الیاف می توانند در کنار هم حرکتی نسبی داشته باشند این حرکت نسبی می تواند بین تک تک الیاف مجاور و یا بین دسته های الیاف مجاور (نخ ) رخ دهد در واقع پارچه
– پارچه ای که در این تحقیق مورد مطالعه قرار گرفته است تاری پودی است –
می تواند تحت یک انحناء خم شود ؛ ولی اگر تحت دو انحناء یا بیشتر خم شود پدیده برش (Shear) ، رخ می دهد پس بطور کلی می توان این پدیده را بدین صورت توضیح داد : برش ، تغییر زاویه بین نخهای متقاطع است و همچنین به عنوان نتیجه خمش و تابیده شدن نخهای بین نقاط تقاطع نیز تعریف می شود. ]4[

برای مطالعه مکانیک تغییر شکلهای پیچیده لازم است ابتدا مطالعات آزمایشگاهی و تئوریهای تغییر شکل مورد توجه قرار گیرند سپس این تغییر شکلها را به شکلهای ساده تر تبدیل نمود و در نهایت مبانی علمی رفتار پارچه تحت تغییر شکلهای ساده بکار گرفته شود. ]1[

مکانیسم برش پارچه ، بر خصوصیات دیگر تغییر شکلهای پارچه مثل افتایش ، خم پذیری و انعطاف و کیفیت زیر دست پارچه تأثیر گذار است. این نوع تغییر شکل بر خصوصیات فیزیکی – مکانیکی عملیاتی مثل کشش و خمش که در جهتهای تار ، پود یا دیگر جهات فرعی پارچه کاملا ً غیر یکسان هستند نیز تأثیر گذار است. کلا ً مصارفی که در حین استفاده از پارچه ، تنش در دو محور یا چند محور دخیل هستند یا مصارفی که تنش در حین استفاده بیشتر از حالت عادی تنش وارده به پوشاک است خصوصیت برشی تأثیر گذار است و بنابراین قابل ملاحظه است که این رفتار مهم مورد مطالعه قرار گیرد زیرا خواص برش ، نقش بسیار مهمی در خصوصیات فیزیکی مکانیکی پارچه بر عهده دارد .]2[

1-2- تعریف برش پارچه (Shearing)

در هنگام استفاده از پارچه زمانیکه پارچه، تحت تغییر شکلهای پیچیده قرار
می گیرد رفتار برشی که یکی از تغییرشکلهای مهم فیزیکی – مکانیکی در پارچه است می تواند روشن کننده خصوصیت اجرایی و عملی پارچه باشد تغییر شکل برشی یکی از خصوصیات بارز پارچه نساجی می باشد که دیگر مواد به شکل ورقه نازک مثل کاغذ یا پلاستیک ، چنین قابلیتی ندارند این ویژگی پارچه را قادر می سازد تا تغییر شکلهای پیچیده را متحمل شود و توانایی پوشش بدن انسان را داشته باشد . همچنین خصوصیت برشی روی خم پذیری ، انعطاف پذیری و زیر دست پارچه تأثیر گذار است و نه تنها برای پارچه های تاری پودی که برای انواع کامپوزیت های
- پارچه های ترکیبی – نساجی نیز از مسائل حائز اهمیت می باشد. ]5[

1-2-1- طبیعت برش

اگر چه در نظر اول ، برش مفهومی بسیار ساده دارد اما در مطالعه جزئیات ، پیچیدگیهایی بوجود می آید. تحقیقات انجام شده توسط Trelor & Spivak در دانشگاه منچستر و Grosberg & Park در دانشگاه لیدز این موضوع را به شکل مطلوبی توجیه کرده است . برای طرح مسأله برش بهتر است در ابتدا کرنش برشی (Shear strain) که توسط Love(1927) و Jeager(1962) مطالعه شده است مورد بحث قرار گیرد .

کرنش برشی خالص عبارت است از تغییر شکل یک جسم بوسیله ازدیاد طول یکنواخت در یک جهت و انقباض در جهت عمود به آن که از این رو مساحت جسم ثابت باقی می ماند. این نوع تغییر شکل در شکل 1 آمده است .

شکل 1- (a) برش خالص . (b) برش ساده . (c) نمایه عمومی برش. [1]

اگر کرنش در یک جهت باعث ازدیاد طول به اندازه گردد طول خط موازی با جهت ازدیاد طول ، به مقدار می رسد و از آنجا که مساحت ثابت است خط در زاویه عمود به آن کاهش طول داده و طولش به مقدار می رسد در جایی که کرنش کم باشد مورد اخیر مساوی با است که مقدار عددی کرنش برای ازدیاد طول و همچنین کاهش طول مساوی خواهد بود. با توجه به شکل ، دیده
می شود که چهار گوش abcd با حالت اریب در جهت کرنش اصلی ، تغییر شکل داده است ، ولی مساحت آن تغییر نکرده است بنابراین اضلاع آن نسبت به حالت قبل دارای زاویه خواهد بود ؛ و زوایا در گوشه ها به اندازه 2 از مقدار به مقدار تغییر نموده است با توجه به قضیه فیثاغورث می توان بیان نمود که اضلاع چهارضلعی abcd به اندازه :

طولشان اضافه شده است که با بسط آن می توان نشان داد مقدار آن ، می باشد حال اگر چهارگوش abcd را بچرخانیم به شکلی که یکی از اضلاع موازی جهت اصلی قرار گیرد کرنش برشی ساده آن در شکل (b .1 ) نشان داده شده است جابجایی واقعی یا برش گوشه های چهار ضلعی در جهتهای cg,bf,ae وdh می باشد که موازی یکدیگرند .

با این تفاسیر اگر یک چهار وجهی در نظر گرفته شود که گوشه های آن به یکدیگر عمود و موازی با جهت برش ساده باشند بعد از اعمال برش ، شکل آن مطابق با شکل (c10) خواهد بود که این تغییر شکل در واقع ایده اولیه برش است که اضلاع آن در جهت عمودی با زاویه هم جهت با برش ، زاویه دار می گردند مقدار کرنش برشیtg است که می توان نشان داد مساوی با tg2 می باشد و برای کرنشهای کوچک، خواهد بود .

بعد از ارائه یک نمایه از کرنش برشی ، نوبت به تنش برشی می رسد؛ تنش برشی عبارت است از نیروی وارده بصورت تانژانتی به صفحه ( یا در طول یک خط اگر با صفحه های دو بعدی مواجه باشیم ) البته این پدیده بصورت متوازن انجام می شود یعنی نیرویی در جهت مخالف و در یک صفحه موازی با آن وجود دارد تا نیروی گشتاور ثانویه حاصل از آن، از چرخش جلوگیری نماید .

بعد از این توضیح ، واکنش ناشی از اعمال تنش برشی به یک نمونه پارچه مورد بررسی قرار می گیرد؛ در حالت کلی تغییر شکلهای پیچیده ای ناشی از بردارهای تنش ایجاد می گردد که مهمترین مسأله تغییر شکل در جهت تنش برشی است که به آن کرنش برشی (tg ) گفته می شود و ارتباط بین این دو فاکتور منحنی تنش – کرنش می باشد این تنش سبب می شود نمونه بصورت آزادی برش پیدا نماید و بعد دیگر آن به شکل دلخواه تنظیم شود همانند آزمایش استحکام که سبب می شود انقباض بصورت آزادانه در جهت دیگر رخ دهد.

در شکل (a.1) تعادل برش خالص که ترکیب تنش کششی مثبت و منفی در جهتهای

عمود به یکدیگر می باشد نشان داده شده است اما برای حالتهای دیگر تغییر شکل برشی ، دارای توزیع کرنش کششی دقیقا ً یکسان و همگون نیست بلکه سبب ازدیاد طول در bd و فشردگی در طول ac می شود اما نکته بسیار مهم و قابل توجه این است که همراه با این کرنش ، تنش نیز وجود دارد و این موضوع موجب یک مشکل حقیقی می شود : پارچه های نساجی ، ورقه های نازکی هستند و تنش فشردگی
نمی تواند ایجاد شود بلکه به راحتی تورم یا بادکردگی (buckling) بوجود
می آید. ]1[

بسیاری از محققین و متخصصین نساجی ، در پی مطالعات پیرامون پدیده برش بر این باورند که باد کردگی در حین عمل برش ، تقریبا ً بزگترین مشکل برای طراحی یک دستگاه آزمایشگر ایده آل می باشد .

بطور کلی می توان اظهار نمود که اندازه گیری برش و کمانش ( بادکردگی ) موادی که به شکل ورقه ای می باشند و سختی کششی و سختی خمشی آنها بسیار پائین است
- به راحتی کشیده یا به راحتی خم می شوند - نیازمند دستگاههای با دقت بالا
می باشد. ]5[

برای جلوگیری از بادکردگی یا تورم زودرس و همچنین برای آنکه بتوان برش بزرگ و قابل توجهی ایجاد نمود، در جهت موازی با محور ad ، نیروی کششی اعمال می شود

که در شکل (a.2) نشان داده شده است .

وجود نیروی P پرواضح به نظر می رسد و از اجزاء تنش کششی T می باشد همچنین موازی با محور ac و مساوی یا بیشتر از تنش فشردگی t می باشد. این نیرو از هر گونه تمایل به تورم در جهت ac جلوگیری می نماید .

کرنش فشردگی ممکن است در طول محور ac ثابت باشد و این موضوع به واسطه نسبت پواسون است که ناشی از کرنش bd می باشد و به خودی خود یا کشش اضافی در همان جهت افزایش می یابد. اگر چه Treloar به سال 1965 نشان داده شده است که تنشهای فشاری داخلی را در همه جهات پارچه نمی توان حذف نمود .


بررسی روبات مسیر یاب ربوحشره

کلمة روبات (‌Robot) اولین بار در سال 1921 در نمایشنامه ‌ای به نام « روباتهای جهانی روسام » اثر کارل چاپک ( نویسنده چک) بکار برده شد؛ این کلمه از روبوتا که در زبان چک معنای « کار شاق و اجباری » می دهد،مشتق شده است و در این نمایشنامه روباتها موجوداتی هستند که توسط داشمند زیست شناسی نابغه‌ای بنام روسام از یک خمیر مایة اسرار آمیز تولید می شوند تا جای
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 238 کیلو بایت
تعداد صفحات فایل 118
بررسی روبات مسیر یاب ربوحشره

فروشنده فایل

کد کاربری 8044

فصل اول :

یک تاریخچة کوتاه


کلمة روبات (‌Robot) اولین بار در سال 1921 در نمایشنامه ‌ای به نام « روباتهای جهانی روسام » اثر کارل چاپک ( نویسنده چک) بکار برده شد؛ این کلمه از روبوتا که در زبان چک معنای « کار شاق و اجباری » می دهد،مشتق شده است و در این نمایشنامه روباتها موجوداتی هستند که توسط داشمند زیست شناسی نابغه‌ای بنام روسام از یک خمیر مایة اسرار آمیز تولید می شوند تا جای کارگران را بگیرند.این نمایشنامه پایانی تراژیک و ترسناک دارد ، چون روباتها به تدریج کاملتر و هوشمند تر شده ، و بعنوان موجود برتر نسل انسان را منقرض می کنند.

شکل (1-1)

شکل (1-1) تصویری تخیلی از روبات نمایشنامة «روباتهای جهانی روسام »

در اسطوره های قوم یهود موجودی افسانه ای به نام گولوم وجود دارد .که از گل ساخته شده،‌توسط نیرویی جادویی جان می گیرد. هیولای رعب انگیز داستان معروف دکتر فرانکشتین ( اثر مری شلی ) را نیز می توان یک روبات دانست. مخلوق هولناکی که از بخیه زدن قطعات بدن مرده های مختلف ساخته شده و با الکتریسیته روح حیات در آن دمیده می شود ( شکل 1-2)

چیزی که در همة این داستانها مشترک است ، پاپان غم انگیز آنهاست: روبات ، گولوم یا هیولا سرانجام خالق خود را نابود می کند. این افسانه ها حیات مصنوعی معادل وحشت و دردسر است این داستانها در واقع انسان را از پیشرفت بیش از حد منع میکند. و نسبت به عواقب وخیم آن هشدار می دهند. اما وحشت نکنید ، روباتهایی که ما می سازیم فقط ماشینهای هوشمندی هستند که دستورات مارا به طور خودکار اجرا می کنند.

اما اجازه دهید ببینیم ایدة‌موجود مصنوعی هوشمند از کجا آمده ، و انسانها در طول قرون واعصار چگونه آن را دنبال می کنند .

شکل

شکل 1-2- مخلوق ترسناک دکتر فرانکشتین، و گولوم

اتوماتون و انیماترونیک

اتوماتون (Automaton) وسیله ایست که می تواند با اتکاء به نیروی خود حرکت کند. از آنجائیکه مکانیزم جرکت اتوماتون اغلب مخفی است و به چشم نمی آید، برای افراد معمولی این تصور پیش می آید که اغلب موجوداتی خودمختار یا زنده هستند . با اینکه تعریف اتوماتیون برای اشیاء ساده‌ای مانند ساعت هم صدق می کند ، اما این اصطلاح معمولاً برای توصیف دستگاه هایی که ظاهر و حرکات موجودات زنده را تقلید می کنند بکار برده می شود .

انسانها از همان اولین روزهای خلقت دربارة‌بدن ( یا موجودات زندة دیگر) و طرز کار آن کنجکاو بوده اند ، و این شفتگی باعث شده تا آرزوی خلق موجودی شبیه آن را در سر بپروانند . اولین اقدامات برای جان بخشیدن به مجسمه ها از یونان باستان شروع شد . آنها با استفاده از نیروی بخار آب و بکار گرفتن مکانیزم های ساده ، بخشهایی از بدن مجسمه ها را به حرکت در می آوردند. بعدها مکانیزمهای پیچیده تری ساخته شد : مجسمه هایی که راه می رفتند ، پرنده هایی که اواز می خواندند ، آتشهایی که خودبخود روشن می شدند ، و مانند آنها . درایران ، مصر ، چین باستان نیز مدارکی دال بر اختراعات مشابه بدست آمده است .

این روند با سقوط امپراتوریهای یونان و روم ( وشروع عصر تاریکی ) دچار وقفه‌ای طولانی شد ، اما در دورة رنسانس اتوماتون نیز مانند سایر علوم و هنرها از پردة محاق خارج شد . داستانهای جالبی از یک عقاب پرندة آهنین که در سالهای دهة 1470 میلادی به دست یوهان مولر ساخته شد، نقل شده است . در قرون چهاردهم و پانزدهم میلادی اتوماتون بازی محبوب اشراف بود . لئوناردو داوینچی یک شیر متحرک برای لویی دوازدهم (‌پادشاه فرانسه) ساخته بود ؛ شارل پنجم تعداد زیادی اسباب بازی مکانیکی داشت ، که آنها را جیانلو دلاتور (دانشمند اهل کرمونا) برایش ساخته بود ، کریستین هویگنس (دانشمند هلندی ) نیز در دهة 1680 یک بازوی مکانیکی اختراع کرده بود .

اولین اتوماتون شبه انسانی (‌که با آدمک android- معروف است ) در اوایل قرن شانزدهم میلادی توسط هانس بالمن ساخته شد . از آن زمان به بعد آدمک ها در مرکز توجه سازندگان اتوماتون قرار دارند . در قرون بعدی آدمکهایی ساخته شدند که ساز می نواختند، نقاشی می کردند، داستان می نوشتند و حتی شطرنج بازی می کردند ( یا حداقل تظاهر به بازی می کردند )

قرن هیجدهم عصر طلایی اتوماتون بود ، و ماشینهای بسیار ظریفی در این سده ساخته شد. برای ساخت این ماشینها اغلب از چرخ دنده های ظریف ساعت ها و استوانه های کنترلی استفاده می شد . قلب ( یا بهتر است بگوئیم مغز ) این ماشینها همان استوانة کنترلی بود که روی آن صدها یا هزاران میله یا بادامک (‌با اشکال پیچیده ) تعبیه می شد. استوانة کنترلی نیروی حرکتی خود را از یک فنر (‌شبیه فنر ساعت ) می گرفت ، و بنوبة خود ( توسط بادامک ها ) اهرمها و میله های دیگری را به حرکت در می‌ورد ؛ که باعث حرکات بسیار پیچیدة ماشین می شد .

معروفترین اتوماتون قرن هیجدهم آدمکی بود بنام تورک ، که در سال 1770 توسط ولفگانگ فون کپلن ساخته شد . این آدمک (‌توسط صاحب خود ، یوهان نپوماک مالزل )‌به سرتاسر اروپا و آمریکا سفر کرد و مردم را با بازی شطرنج خود متحیر ساخت . مردم آن روزگار به اندازة‌کافی از مکانیزم داخلی اتوماتون ها اطلاع داشتند ، و میدانستند که یک وسیلة‌مکانیکی ( هر اندازه پیچیده ) نیم تواند فکر کند . اما تورک این عقیده را به چالش کشید . تورک با اغلب مشاهیر آن روزگار (‌مانند ناپلئون ، چارلز بابیج و آدگارآلن پو) بازی کرد ، و اکثر آنها را هم برد . اما راز تورک بعدها بر ملا شد، و معلوم شد که داخل این ماشین ظریف جایی برای پنهان شدن یک انسان تعبیه شده بود، که یک شطرنج باز قهار را در خود مخفی می کرده است .

اما تورک پیچیده ترین اتوماتون تاریخ نیست ، بلکه این عنوان بی تردید شایستة یک مرغابی مکانیکی است که در سال 1738 توسط ژاک و کانسو اختراع شد . این مرغابی شنا می کرد، بال می زد ، با منقار پرهایش را می آراست ، آب می خورد ، غذا می خورد ، و حتی پس ماندة غذای خودره شده را دفع میکرد! تمامی این حرکات مستلزم هزاران قطعة متحرک مکانیکی بود که در داخل بدن مرغابی و روی یک پایة‌بزرگ نصب می شود . اما اتوماتون برای وکانسو فقط جنبة سرگرمی داشت . و دغدغة اصلی وی ماشینهای خودکار بافندگی بود .، در سال 1743 ، و کانسو بازیچه‌های مکانیکی خود را فروخت و مدیریت یک کارخانة دولتی ابریشم بافی در فرانسه را بر عهده گرفت . در اینجا بود که وکانسو یک ماشین خودکار بافت نقوش بر جستة ابریشم اختراع کرد که توسط کارتهای سوراخ دار کار می کرد .و . متأسفانه این اختراع هوشمندانه در اثر عدوات بافندگان دیگر برای مدتها نادیده گرفته شد .

در سال 1804 جوزف ماری ژاکارد ابداع و کانسورا را با طرحهای خود تکمیل و افتخار اختراع ماشین بافندگی خودکار را به نام خود ثبت کرد . با اینکه ماشینهای ژاکارد هم از مخالفت کینه توزانة صاحبان کارخانجات بافندگی معاصر وی مصون نماند ( و حتی در مواردی کار به سوزاندن کارخانجات بافندگی خودکار کشید )، اما در نهایت این ماشینها کارایی فوق العاده خود را به اثبات رسانده و راه انقلاب صنعتی را هموار کردند .

در قرن نوزدهم و اوایل قرن بیستم ، همزمان با پیشرفت تکنیکهای ساخت و تولید ، وسایل مکانیکی خودکار به میان مردم راه یافتند که از میان آنها می توان به ساعتهای فانتزی ، اسباب بازیهای مکانیکی پیچیده و اختراعات نو ظهور دیگر اشاره کرد. امروزه موتورهای الکتریکی مینیاتوری و وسایل کنترل الکتریکی جای فنر و چرخ دنده را در اسباب بازیها گرفته است. اما همچنان می توان اتوماتون های ظریف و خوش ساخت را به ( قیمتهای مختلف ) در گوشه و کنار یافت .

بدون شک سهم بزرگی از اختراعات انقلاب صنعتی مدیون کنجکاویهای بازی گونة سازندگان اتومان در عصر رنسانس است . امروزه اتوماتون به هنر نیز راه یافته است . شرکت معظم فیلمسازی والت دیسنی در بسیاری از آثار موفق خود از ماشینهای پیچیده‌ای که نقش بازیگران حرفه‌ای را ایفا می کنند استفاده کرده است. این ماشینهای فوق العاده ظریف، که انیماترونیک (Animatronik) نامیده می شوند ، به کمک موتورهای الکتریکی و ابزارهای هیدرولیک ( و کسی به جای آنها حرف بزند ) باور حیات را بسادگی به افراد القاء میکنند .

شکل 1-3- یکی از انیماترونیک های والت دیسنی

از حقه های سادة یونانیان و مصریان باستان گرفته شده تا انیماترونیک های پیچیدة والت دیسنی (‌که به معجزة بیشتر شبیه هستند ) ، همة این ماشینها در یک اصل ساده مشترکند، آنها فقط به یک سلسله حرکات از پیش تعیین شده را باز تولید و تکرار می کنند .

ماشینهای تولید

از همان شروع انقلاب صنعتی کارخانه ها با مشکلی به نام تأمین نیروی کار ماهر روبرو شدند . با اینکه نیروی آب ، بخار ، گاز و برق به انسان کمک می کرد، اما نقش اصلی را همچنان مردان ،زنان ، و کودکانی بر عهده داشتند که در ازای مزد ناچیز در کارخانه ها روز خود را شب می کردند . در این شرایط بود که ایدة اتوماسیون بسرعت به در میان کارخانه رواج یافت . اما بزودی روشن شد که ماشینی که بتواند حتی یک کار ساده (‌مانند تبدیل مفتول فولادی به گیره های کاغذی ) را بطور کاملاً‌خودکار انجام دهد؛ ماشینی بغایت پیچیده خواهد بود. کارخانة کاملاً خودکار هنوز هم فقط یک رؤیاست ( رؤیایی که متعلق به فیلم‌های علمی – تخیلی مانند فیلم جذاب و دیدنی ادوارد دست قیچی ) و در کارخانه‌های امروزی برای هر کار خاص یک ماشین خاص وجود دارد : ماشین برش ، ماشین خمکاری ، ماشین جوشکاری و مانند آنها .

اما ورود اتوماتون ها به صنعت تا زمان امکان برنامه ریزی آنها عملی نشد ؛ روباتیکه نتواند برای موقعیتهای مختلف برنامه ریزی شود ، از ارزش عملی چندانی برخوردار نیست . اتوماتون ها ( یا روباتها ) از ماشینهای خودکار قدیمی یک گام جلوتر بودند: آنها ایمنی بیشتری برای کارگران تأمین می کردند، چون آنها ذاتاً نیازی به همراهی کارگران نداشتند و می توانستند بدون هیچگونه کمکی کار خود را به خوبی انجام دهند (‌شکل 1-4 را ببینید )

شکل 1-4- یک روبات جوشکار

مهمترین قسمت مکانیکی یک روبات کارگر بازوی آن است ( شکل 1-5) بازوی روبات یک «‌دست » مکانیکی تخصصی یافته است که برای انجام یک یا چند وظیفة خاص طراحی شده است هر بازوی روباتی می تواند بر طبق برنامه ریزی انجام شده در مغز آن کارهای مختلفی را انجام دهد علاوه بر آن این امکان نیز وجود دارد که یک روبات بتواند بازوهای مختلفی داشته باشد .

روباتها دریچة جدیدی برروی اکتشافات عملی گشوده‌اند. امروزه به کمک روباتها به جاهایی می توان سفر کرد که در گذشته تصور آن هم دشوار بود :سفر به سایر کرات منظومة شمسی مانند مریخ ، سفر به اعماق فضا یااقیانوسها ،‌یا سفر به نقاط صعب العبور مانند قطب جنوب و حتی قلة کوههای آتشفشان در شکل 1-6 روباتهای مریخ نورد ناسا بنامهای اوپورچونیتی و پت فایندر را می بینید .

روباتهای افسانه‌ای

با اینکه افسانه های زیادی دربارة روباتها و موجوداتی با حیات مصنوعی نقل شده است ، اما در این افسانه ها بروشنی معلوم نیست این هیولاها چگونه خلق شده اند . در داستانهای گولوم و فرانکشتین هیچ توصیف واقعی از نحوة خلایق هیولاوجود ندارد و حتی در داستان عملی تر کارل چاپک روباتها مخلوقاتی از جنسی سیتوپلاسم مرموز هستند ، نه موجوداتی مکانیکی . اما روباتهای واقعی ماشینهای ظریفی هستند که بر طبق یک نقشة فنی دقیق ساخته می شوند. بااین حال ، همیشه این تصور ( یا ترس ) وجود داشته است که روباتها بتوانند از خالق خود یعنی انسان پیشی بگیرند.

شکل 1-5- یک بازوی روباتی

شکل 1-6- روباتهای مریخ نورد .

روباتها همیشه در سینما حضور چشمگیر داشته اند. روباتهای دوست داشتنی نسل ما سی تری پی او (‌C3PO)و آر تودی تو (R2D2) روباتهای قهرمان سری فیلمهای جنگ ستارگان - به نوعی تداعی کنندة لورل و هاردی بودند .

شکل 1-7- روباتهای قهرمان فیلم جنگ ستارگان

اما امروزه هنر پیشه بیشتر در نقش موجودات خبیث ظاهر می شوند: سایبورگ های فیلم بلیدرانر، یا ماشینهای آدمکشی TX-T1000 در مجموعه فیلمهای ترمیناتور

شکل 1-8- روبات خبیث فیلم ترمیناتور

حضور روباتها در فیلمهای سینمایی سابقه‌آی بسیار طولانی دارد : اولین روبات در سال 1909 در فیلمی انگلیسی به نام خدمتکار الکتریکی ظاهر شد . پس از آن در فیلم معروف متروپلیس ( ساختة فریتزلانگ کارگردان آلمانی ) روباتی مؤنث بنام ماریا ایفای نقش کرد. در فیلم معروف جادوگر شهر اوز ( که در ایران به نام جادوگر شهر زمرد به نمایش درآمد ) نیز یکی از نقشهای اصلی (‌گوی آتش ، فرمانروای شهر زمرد ) بر عهدة روباتها گذاشته شد . دهة 1950 اوج فیلمهای تخیلی بود که بدون روباتها هیچوقت کامل نبودند، معروفترین این روباتها رابی قهرمان با مزة فیلم سیارة ممنوع بود ، که بدون تردید می توان آنرا الهام بخش بسیاری از روبات – هنر پیشه های بعد ازخود نامید.

کتابخوانها نیز از روباتها دور نبوده اند ، داستانهای علمی – تخیلی همواره با این موجودات عجین بوده است.

بدون تردید معروفترین نویسنده‌ای که دربارة‌روباتها به تفصیل نوشته ، کسی نیست جزء آیزاک آسیموف .آسیموف در طی خلق دهه ها داستان علمی ، تخیلی مهیج ، قوانین سه گانة روباتیک خود را تدوین کرد. که امروزه به عنوان اصول اساسی این صنعت پذیرفته شده‌اند قوانین سه گانة روباتیک آسیموف چنینند :

1- قانون اول روباتیک : یک روبات نباید (‌از طریق اقدام یا عدم اقدام خود ) باعث صدمه دیدن یک انسان شود . یااجازه دهد به یک انسان آسیب برسد .

2- قانون دوم روباتیک: یک روبات باید دستوراتی را که انسانها به آن می دهند اجرا کند مشروط بر اینکه قانون اول نقض نشود .

3- قانون سوم روباتیک: یک روبات باید از خودش محافظت کند ، مشروط بر اینکه قانون اول یا دوم نقض نشوند .

آسیموف بعدها قانون دیگری به این قوانین سه گانه اضافه کرد ، و از آنجائیکه این قانون از همه مهمتر بود و باید در بالای لیست قرار می گرفت، نام آنرا قانون صفرم روباتیک‌( که دراین حالت قانون اول روباتیک فقط تا زمانی معتبر است که قانون صفرم را نقض نکند .)

قانون صفرم روباتیک : یک روبات نباید (‌از طریق اقدام یا عدم اقدام خود ) باعث صدمه دیدن نژاد بشر( یاکرة زمین ) شود یا اجازه دهد به این نژاد (‌یا کرة زمین ) آسیب برسد.

روباتهای خیالی کتابها و فیلمهای سینمایی در واقع شمشیری دولبه هستند ، از یک طرف آنها با تحرک قوة تخیل افراد باعث تقویت پایه های تکنولوژیک آینده به خصوص در میان جوانان و نوجوانان نسل امروز می شوند. چه بسیار از متخصصان فعلی این رشته که با دیدن دلربایی های C3Po در فیلم جنگ ستارگان ، یا کارهای محیر العقول T800در فیلم ترمیناتور مسیر آینده خود را انتخاب کرده اند . ازر سوی دیگر ، داستانها و فیلمهای علمی – تخیلی مرز انتظارات مردم از روباتها را تا حد زیادی بالا می برند . وقتی مردم با تصوری که از روباتهای فیلمهای علمی – تخیلی دارند با یک روبات امروزی روبرو می شوند بکلی سرخورده می شوند (‌البته مقایسة‌روبات تغییر شکل دهندة فیلم ترمیناتور با یک روبات جوشکار براستی دور از انصاف است !) اما وقتی خودتان با تلاش بسیار یک روبات ساده می سازید ، حداقل متوجه می شوید که چه راه درازی تا روبات نابغه‌ای مانند R2D2 در پیش است .

روباتهای آینده :

رؤیاهای آینده از دل دانشگاهها و مراکز تحقیقاتی امروز بیرون می آید . ژاپنی ها سالهاست روی روباتهای انسان نما – آدمک مصنوعی – کار می کنند آسیمو(Asimo) و P5 از محصولات شرکت هوندا نوید خدمتکارهای روباتیک آینده را می دهند . (‌Aibo) از شرکت سونی طرفداران حیوانات خانگی را ذوق زده کرده است . بحثهای عمیق تر روباتیک ،‌ مانند هوش مصنوعی ، روشهای ارتباط انسان و روبات ، و روباتهای دارای رفتارهای اجتماعی ، سالهاست درمراکز مهم تحقیقاتی دنیا – مانند MIT دنبال می شود .

شکل 1-9- آیبو- سگ روباتی سونی ،‌آسیمو، روبات انسان نمای هوندا

در سالهای اخیر با ظهور تکنولوژیهای جدیدی مانند نانوتکنولوژی (Nanotechnology) ، روباتیک نیز دچار تحولات عمیقی شده است .امروزه به جای ساختن ماشینهای بزرگ و پیچیده محققان در فکر ایجاد انبوهی از ماشینهای ریز و ساده هستند که بتوانند مانند یک پیکر واحد عمل کنند ( آیا انسان نیز از تعدادزیادی سلول ساده ساخته نشده است ؟) از طرف دیگر ، محققان امروزی در پی ساختن روباتهایی هستند که بتوانند از در مواجهه با محیط خود تکامل پیدا کرده و به موجودات یشرفته تری تبدیل شوند.

شکل 1-10- نانو روبات ها

نکتة‌اصلی در این میان نحوة برخورد جامعة‌انسانی با این تحولات است . قدرت بیشتر یعنی مسئولیت بیشتر ( یا قدرت انهدام بیشتر ) شاید همین دغدغه های انسانی و اجتماعی بود که آسیموف را به تدوین چهار قانون اساسی روباتیک واداشت و این قوانین چنین در میان اهل فن محترم شمرده می شوند. هرگز فراموش نکنید که :‌روباتها در نهایت ابزارهایی ( هر چند فوق العاده پیچیده )بیش نیستند ، و مسئولیت استفاده صحیح از این ابزار بر عهدة ما انسانهاست .

فصل دوم :

مقدمه‌ای بر مکانیک

مفاهیم اساسی مکانیک

مکانیک علم مطالعة نیروهای عمل کنند ه در یک ماشین ( یا سیستم ) است نیرو (‌Force) حاصل یک عمل فیزیکی است ، و باعث انجام کار (‌work) می شود وقتی چیزی را هل می‌دهید بر آن نیرو وارد می کنید و همین باعث انجام کار ( جابجایی جسم ) می شود (شکل2-1) وقتی جسمی را حرکت می دهید در واقع در حال اضافه کردن انرژی (‌energy) آن هستید .

شکل 2-1 نیرو

حرکت نوع حاصی از انرژی است که به آن انرژی جنبشی ((kinetic energy گفته می شود ؛ همین انرژی جنبشی است که حتی در صورت قطع اعمال نیرو باعث ادامة حرکت جسم می شود ( شکل2-2)

اگر نیرویی مخالف حرکت جسم وجود داشته باشد ، آن جسم تاابد به حرکت خود ادامه خواهد داد. اما دردنیای واقعی همیشه اصطکاک( friction) وجود دارد ، که باعث کند شدن حرکت اجسام و در نهایت تقویت آنها می شود .

در مطالعة سیستمهای مکانیک ( که موضوع این فصل است ) با دو نوع کمیت روبرو خواهیم شد که شناخت دقیق آنها ضروری است . اولین نوع از کمیت ها همان عددهایی است که در زندگی روزمره با آنها سروکار داریم : طول یک شیء چقدر است ؟ پختن یک کیک چقدر زمان می برد؟ به این نوع از کمیت ها ، کمیت بدون بعد یااسکالر ( Scalar) گفته می شود. اما کمیت های دیگری نیز وجود دارند که برای توصیف آنها به بیش از یک عدد نیاز داریم : وقتی دربارة حرکت یک جسم صحبت می کنیم ، علاوه بر مقدار حرکت باید جهت آن را نیز مشخص کنیم به این نوع از کمیت ها ، کمیت جهت دار یا بردار(‌vector) می گویند.

شکل 2-2- انرژی جنبشی

انرژی

انرژی توانایی انجام کار است . انرژی ماهیت مادی ندارد ، حتی نور و الکتریسیته نیز خود انرژی نیستند بلکه آنها دارای انرژی هستند . انرژی بر دو نوع است جنبشی ( Kinetic) و پتانسیل (Potential) انرژی جنبشی انرژی جسم در حال حرکت است . که به مقدار جرم و سرعت آن بستگی دارد انرژی پتانسیل چسم به واسطة موقعیت آن نسبت به یک نقطه مرجع است (‌انرژی جسم در ارتفاع، فنر فشرده شده ، و انرژی ذخیره شده در مواد شیمیایی همگی انرژی پتانسیل هستند ) انرژی های جنبشی و پتانسیل می توانند به یکدیگر تبدیل شوند.

قبل از اینکه بتوانیم دربارة انرژی و نحوة محاسبه آن بیشتر صحبت کنیم ، باید با چند کمیت فیزیکی دیگر ، واحدهای اندازه گیری و روشهای نمایش ریاضی آنها آشنا شویم .

واحدهای اندازه گیری

مکانیک یکی از شاخه های فیزیک است ، به همین دلیل با اندازه گیری و واحدهای اندازه گیری سروکار دارد . سیستم جهانی اندازه گیری سیستم متریک SI، است که اکنون در تمام کشورهای دنیا پذیرفته شده است ، اما در این کتاب اغلب از سیستم انگلیسی (یااینچی) استفاده کرده ایم برای آشنایی با رابطة این واحدها و ضرایب تبدیل آنها به پیوست مراجعه کنید .

مکان :

برای اینکه بتوان در مورد یک جسم صحبت کرد ، باید دانست که در چه مکانی قرار دارد . مکان (Position)یک جسم ازطریق انتخاب یک سیستم مختصات (‌که می تواند دو بعدی یا سه بعدی باشد ) بیان می شود . مکان دارای واحد خاصی نیست ، ولی اغلب کمیتهای فیزیکی دیگر دارای رابطة‌مستقیم با مکان (‌یا تغییر مکان ) جسم می باشند.

زمان :t

ثانیه: s

در تمام سیستمهای اندازه گیری رایج، واحد زمان ثانیه (‌secod) است همة ما با مفهوم ثانیه آشنا هستیم ، و بصورت رومزه با آن سروکار داریم ، اما تعریف علمی و استاندارد ثانیه در سیستم SI‌عبارت است از : زمان 770/631/ 192/9 نوسان اتم تحریک شدة سزیوم 133.

طول :I

متر :m

که بنام فاصلة distance نیز شناخته می شود . عبارت است از فاصلة‌دو نقطه در فضا در سیستم SI طول به عنون مسافتی که نور در ثانیه طی می کند تعریف شده است.

جرم :m

کیلوگرم: kg

جرم (mass) تودة ذاتی است که جسم از آن ساخته می شود وقتی جرم در یک میدان جاذبه قرار ‌گیرد، نیرویی به آن وارد می شود که به آن وزن (weigth)می گویند توجه داشته باشید که جرم ذاتی جسم است و درهیچ حالی صفر نمی شود، در حالیکه وزن تأثیر میدان جاذبه بر جسم است و می تواند در شرایط خاصی صفر شود . واحد استاندارد جرم در سیستم SI استوانه‌ای به جرم یک کیلوگرم از جنس پلاتین – ایریدیوم است . که در فرانسه نگهداری می شود ، و همة نمونه های استاندارد جرم از روی آن کپی می شوند. متوجه شده‌اید که جرم بر خلاف سایر کمیت های فیزیکی دیگر به کمک پدیه های عمومی فیزیکی ( که در تمام جهان قابل سنجش هستند ) سنجیده نمی شود؛ مدتهاست دانشمندان به دنبال راهی برای تعریف واحد جرم بصورت کمیتی قابل اندازه گیری در تمام جهان هستند ، ولی هنوز به نتیجة‌دلخواه نرسیده اند .

هر جسم دارای ابعاد فیزیکی در تمام جهات فضا است ، که جرم آن بطور یکنواخت یا غیر یکنواخت در این محدوده پخش شده است اما برای هر جسم نقطه‌ای وجود دارد که به نظر می رسد جرم آن بصورت یکنواخت در اطراف نقطة توزیع شده است به این نقطه مرکز جرم ((center of mass جسم گفته می شود . مرکز جرم یک جسم می تواند ( بسته به شکل جسم ) داخل جسم یا خارج آن قرار داشته باشد . مرکز جرم نقطه‌ای است که به نظر می رسد تمام جرم جسم در این نقطه متمرکز شده است .

سرعت: V

متر بر ثانیه :

سرعت Velocity یکی از واحدهای فرعی است که از واحدهای اصلی مشتق می شود واحدهای فرعی کمیت جدیدی را تعریف نمی کنند، بلکه رابطه بین کمیت های اصلی را نمایش می دهد سرعت عبارتست از مقدار تغییر مکان در واحد زمان ، برای مثال سرعت ، 3m/s یعنی جسم در هر ثانیه 3 متر جابجا می شود وقتی یک جسم در حال حرکت است به حرکت خود ادامه خواهد داد مگر اینکه نیروی دیگری بر آن وارد شود این قانون اول حرکت نیوتن است ، که به صورت کلی زیر بیان می شود:

وضعیت یک جسم ساکن یا در حال حرکت یکنواخت تغییر نمی کند، مگر اینکه نیرویی خارجی به آن اعمال شود .

سرعت از کمیتهای برداری است یعنی علاوه بر مقدار دارای جهت نیز هست اگر جسم بتواند فقط در یک بعد ( روی یک خط راست ) حرکت کند ، حرکت آن دو جهت بیشتر نخواهد داشت . شکل 2-3 را ببینید به خطی که جسم می تواند در امتداد آن حرکت کند محور (axis)‌می گویند ، که این محور معمولاً‌محور X‌نامیده می شود .

شکل 2-3- حرکت از روی خط راست ؛ حرکت یک بعدی

از آنجائیکه در حرکت روی خط راست ، جسم فقط روی محور X می تواند حرکت کند ، سرعت آن بصورت زیر محاسبه خواهد شد .

که در آن (‌حروف یونانی دلتا )‌نشان دهندة مقدار تغییرات است .

اگر جسم بتواند در دو بعد ( یک صفحه ) حرکت کند ، حرکت آن دارای جهت های بیشمار خواهد بود ( شکل 2-4) را ببینید ) در اینجا دو محور به نامهای x,y وجود دارد که جسم می توند د رامتداد آنها حرکت کند مکان (‌یا مختصات ) هر نقطه در صفحه بصورت زوج ( x,y) نمایش داده می شود . که x‌و y به ترتیب فاصلة‌آن نقطه از مبدأ مختصات (‌محل تقاطع محورها ) روی محورهای Y,X هستند و.

وقتی یک جسم در صفحه از نقطه‌ای به نقطه دیگر می رود جابجایی آن روی هر دو محور اتفاق خواهد افتاد شکل (2-5)

میزان جابجایی یک نقطه در صفحه ‌بر حسب جابجایی آن روی محورها ، از فرمول زیر محاسبه می‌شود

و سپس سرعت جسم مانند قبل بدست می آید:

شکل 2-4- فضای دو بعدی صفحه

شکل 2-5- حرکت در صفحه : حرکت دو بعدی

اجسام می توانند درسه بعد (‌فضا) نیز حرکت کند ، که در این حالت هم حرکت آنها دارای جهت های بیشمار خواهد بود .شکل 2-6 را ببینید برای مشخص کردن حرکت در فضای سه بعدی به سه محور بنامهای z , y, x نیاز داریم و مختصات هر نقطه در فضا به صورت سه گانة x,y,z)) نمایش داده می شود که z,y,x به ترتیب فاصلة آن نقطه از مبدأ مختصات روی محورهای Z,Y,X هستند .

میزان جابجایی یک نقطه در فشا بر حسب جابجایی آن روی محورها ، از فرمول زیر بدست می‌آید:

و سرعت آن نیز مانند قبل محاسبه می شود :

شکل 2-6 فضای دو بعدی صفحه

شتاب: a

متر بر مجذور ثانیه :m/s2

شتاب ( acceleration) نیز یکی از واحدهای فرعی است شتاب عبارتست از مقدار تغییر سرعت در واحد زمان . برای مثال 3m/s2 یعنی سرعت جسم در هر ثانیه 3 متر بر ثانیه افزایش می یابد . شتاب نیز کمیتی برداری است ، که علاوه بر مقدار دارای جهت نیز هست .

نیروی جاذبه در واقع نوعی شتاب است ، چون میدان جاذبه باعث می شود تا سرعت سقوط اجسام لحظه به لحظه بیشتر شود .شتاب جاذبة زمین m/s2 80665/9 است ( که معمولاً در محاسبات m/s2 8/9 در نظر گرفته می شود )‌وقتی یک جسم از حالت سکون شروع به سقوط می کند سرعت آن بعد از یک ثانیه به m/s2 8/9 می رسد .

و بعد از چهار ثانیه سرعت آن به مقدار قابل توجه 39.2m/s خواهد رسید ( و این یعنی متجاوز از 140 کیلومتر بر ساعت )

اما مسافتی که جسم در حال سقوط آزاد بر حسب زمان طی می کند ، از فرمول زیر بدست می‌آید:

جسمی که از حالت سکون سقوط آزاد می کند ، بعد از یک ثانیه مسافتی معادل 4.9m طی خواهد کرد:

و این جسم بعد از چهار ثانیه ( در حالیکه به سرعت 140 کیلومتر بر ساعت رسیده )‌مسافتی معادل 156.8m را طی کرده است .

نیرو :F

نیوتن m/s2× N=kg

نیرو (‌Force) بصورت جرم ضرب در شتاب a×F=m ، تعریف می شود واحد نیرو در سیستم SI به افتخار آیزاک نیوتن دانشمند انگلیسی که قوانین سه گانة وی در حرکت اساس فیزیک کلاسیک را تشکیل می دهند نیوتن Newton نامگذاری شده و با N‌نمایش داده می شود قانون اول نیوتن را در قسمتهای قبل دیدید ، قانون دوم حرکت نیوتن ،که رابطة نیرو و حرکت را توصیف می کند،؛ بصورت زیر بیان می شود :

تغییر حرکت ( شتاب ) در راستای اعمال نیرو صورت می گیرد، و مقدار آن با جرم جسم و نیروی وارد شده متناسب است .

قانون سوم حرکت نیوتن نیز ، که دربارة‌عمل و عکس العمل است بصورت زیر بیان شده است :

برای هر عمل یک عکس العمل وجود دارد ، مساوی و در جهت مخالف آن

اگر به جسمی به جرم یک کیلوگرم بطور پیوسته نیرویی معادل یک نیوتن وارد‌آید ، با شتاب ثابت و یکنواخت 1.0m/s2 به حرکت در خواهد آمد :

اندازة حرکت:

کیلوگرم متر بر ثانیه :m/s×kg

اندازة حرکت (momentum): شباهت زیادی با نیرو دارد و بصورت جرم ضرب در سرعت v×p=m ، تعریف می شود .

انرژی :E

ژول m2/s2 ×j=kg

در ابتدای همین فصل دیدید که انرژی energy‌ را بصورت نیرو ضرب در مسافت d×E=F ، تعریف کردیم . از همین جا می توان واحد اندازه گیری انرژی را به سادگی به دست آورد .

واحد انرژی در سیستم SI به افتخار دانشمند فرانسوی ژول ( Joule) نامگذاری شده و بصورت نیوتن متر (Nm) نیز بیان می شود .

انرژی جنبشی :KE

گفتیم که انرژی بر دو نوع است : جنبشی و پتانسیل

انرژی جنبشی kinetic energy انرژی جسم در حال حرکت است که به جرم و سرعت آن بستگی دارد . برای محاسبة‌انرژی جنبشی یک جسم از فرمول زیر استفاده می شود :

همانطور که می بینید ، انرژی جنبشی با مجذور سرعت متناسب است این بدان معناست که با دو برابر شدن سرعت جسم انرژی جنبشی آن چهار برابر خواهد شد. به همین دلیل است اجسام پرسرعت حتی اگر جرم کمی داشته باشد ( مانند گلولة تفنگ) بسیار خطرناک هستند.

انرژی پتانسیل :PE

انرژی پتانسیل Potential energy اانرژی نهفته در جسم به واسطة موقعیت آن نسبت به یک نقطة مرجع است وقتی یک جسم از سطح زمین بالا برده می شود ، انرژی پتانسیل در آن ذخیره می شود . این انرژی پتانسیل بصورت زیر محاسبه می شود :

RE=mgh

انرژی فنر فشرده شده ، و انرژی ذخیره شده در مواد شیمیایی از انواع دیگر انرژی پتانسیل هستند انرژی های جنبشی و پتانسیل می توانند به سادگی یکدیگر تبدیل شوند

ماشینهای ساده

بعد از شناخت مفهوم اساسی مکانیک ، یعنی نیرو، باید سراغ وسیلة اعمال نیرو برویم ، ساده ترین مکانیزم اعمال نیر ماشین ساده ( simple machine) نام دارد . یک ماشین ساده با تغییر در فاکتورهای مکانیکی ، انجام کارهای دشوار ( و گاه غیر ممکن – مانند بلند کردن یک اتومبیل با نیروی بازو ) را تسهیل می کند. اهمیت ماشینهای ساده در آن است که پیچیده ترین ماشینها(‌حتی روبات ها ) نیز از ماشینهیا ساده تشکیل می شوند . انواع مختلفی از ماشینهای ساده و جود دارد که در این بخش به آنها آشنا خواهید شد .

قدرت ساختاری :

مهندسان مکانیک ساعتها و روزهای متمادی صرف می کنند تا سازه های خود را بیشترین قدرت و استحکام ساختاری طراحی کرده و بسازند. ما در اینجا همة این تلاشها را در یک جمله‌برای شما خلاصه می کنیم : مثلث منبع قدرت و استحکام است .

اجازه دهید این موضوع را کمی بیشتر بشکافیم ، و نشان دهیم که مثلث چگونه به استحکام سازه کمک می کند .

مثلث و مربع

هر سازه مکانیکی دارای قدرت و استحکام حاصی است که از شکل سازه و نحوة اعمال نیروها به آن ناشی می شود حتی یک سازة‌کاغذی اگر نیروها از جهت مناسب به آن وارد شوند ، می تواند استحکام زیادی از خود نمایش دهد برای درک بهتر این موضوع دو سازة‌مربعی و مثلثی شکل 2-7 را ببینید .

شکل 2-7- قدرت سازه ها

در هر دو سازه میله ها به وسیله لولا به هم متصل شده اند ، و اتصالات بطور کامل قابلیت حرکت دارند اگر درست در وسط ضلع بالایی مربع یک فشار عمودی وارد کنید ، این شاخه نیروی وارده را به دو ضلع عمودی منتقل کرده و نیرو از آنجا به ضلع پایینی وارد می شود. از آنجائیکه میله ها در مقابل نیروی فشاری (Comperssion) مقاوم هستند ، سازة‌مربعی بخوبی فشار را تحمل می کند. اما اگر محل وارد کردن نیرو از نقطة‌وسط به سمت یکی از اضلاع عمودی جابجا شود (‌یا جهت آن کاملاً عمود نباشد ) ، نیرو به لولاها منتقل شده و سازة مربعی فرو می ریزد . پیداست که سازة مربعی در مقابل نیروهای جانبی پایداری ندارد.

اما در سازة مثلثی هر نیرویی از طریق اضلاع کناری به قاعدة مثلث منتقل شده و این ضلع را تحت کشش قرار می دهد از آنجائیکه میله ها در مقابل نیروی کششی ( Tersion) بسیار مقاوم هستند سازه مثلثی هر نوع نیرویی را به بخوبی تحمل خواهد کرد بخوبی دیده یم شود که سازة‌مثلثی پایداری بسیار بالایی دارد و در هیچ حالتی فرو نخواهد ریخت (‌البته تا زمانی که محور لولاها در مقابل نیرو مقاومت کنند و خرد نشوند )

برای نمونه وقتی دو تسمة فلزی را با پرچ به هم متصل می کنید ، مقاومت سازه در اثر ایجاد مثلثهای مخفی است که در آن پایدار خواهند شد . مقاومت سازه های ساختمانی که در آنها ازبادبند استفاده شده نیز در اثر وجود همین مثلثهای مخفی است شکل 2-8 را ببینید .

شکل 2-8- مثلثهای مخفی در سازه های مقاوم

یکی دیگر از سازه های مقاوم دایره است ، که نمونة‌آنرا در گنبدها ، قوسها و تخم مرغ دیده‌اید .نوع دیگری از نیرو که در اینجا فقط به آن اشاره میکنیم ، نیروی برشی (shear) است مانند نیرویی که قیچی به کاغذ وارد می کند تمامی انواع نیروها – فشاری ،‌کششی ، برشی – به جسم تنش ( Stress) وارد می کنند .

اهرم

ماشین سادة دیگری که مزیت مکانیکی ایجاد میکند، اهرم ( lever) است اهرم دارای سه بخش عمده است و بازوی محرک، بازوی مقاوم ، و تکیه گاه . در شکل 2-12 ساده ترین نوع اهرم ( که به اهرم نوع اول معروف است ) را مشاهده می کنید در این نوع اهرم تکیه گاه بین نیروی محرک و نیروی مقاوم قرار دارد .

شکل 2-12- اهرم نوع اول

با وجود پیچیدگی بیشتر ، محاسبات ریاضی اهرم از سطح شیبدار ساده تر است . بازوی محرک (dE) فاصلة بین تکیه گاه تا نقطة‌اعمال نیروی محرک (E) ، و بازوی مقاوم (dR) فاصلة‌بین تکیه گاه تا نقطة‌اثر نیروی مقاوم (R) است . اگر dE بزرگتر از dR باشد ؛ مزیت مکانیکی اهرم از یک بزرگتر است ؛ بعبارت دیگر ، مزیت مکانیکی اهرم بصورت زیر محاسبه می شود :

در شکل 2-13 یک اهرم نوع دوم را می بینید . در این نوع اهرم نیروی مقاوم بین نیروی محرک و تکیه گاه قرار دارد در این نوع اهرم مزیت مکانیکی همیشه بیشتر از یک است .

شکل 2-13- اهرم نوع دوم

شکل 2-14 یک اهرم نوع سوم را نشان می دهد . در این نوع اهرم نیروی محرک بین نیروی مقاوم و تکیه گاه قرار دارد . در این نوع اهرم مزیت مکانیکی همیشه کمتر از یک است . ساعت انسان یک اهرم نوع سوم است ، که در آن آرنج تکیه گاه ، مچ دست محل نیروی مقاوم و عضلة‌ساعد محل اهمال نیروی محرک است .

شکل 2-14- اهرم نوع سوم

چرخ و گشتاور

چرخ (Wheel) یکی از بزرگترین اختراعات بشر است . چرخ یک ماشین ساده است که برای غلبه بر اصطکاک بکار می رود . در شکل 2-15 یک چرخ و نیروهای وارد بر آن را مشاهده می کنید . نیرویی که به محور چرخ وارد شده ،‌در محل اتصال چرخ و زمین به زمین اعمال می شود فاصلة‌بین محور چرخ و محل اعمال نیروی چرخ به زمین ، شعاع چرخ(r) نامیده می شود.

شکل 2-15- چرخ

به خطی که از مرکز چرخ به محل اتصال چرخ با زمین کشیده شده ، دقت کنید ؛ این خط شباهت زیادی به یک اهرم نوع اول یا دوم دارد . اما جالب است که تکیه گاه و نقطة‌اعمال نیروی محرک روی هم منطبق هستند . با اینکه طول بازوی محرک این ماشین صفر است ، اما چرخ همچنان می چرخد . اگر نیروی محرک به محیط چرخ اعمال شود ، بازوی مقاوم صفر خواهد شد . (‌چون تکیه گاه و محل اثر نیروی مقاوم یکی می شوند ) وقتی یکی از عوامل مؤثر در حل معادلة اهرم صفر شود ، حل آن غیر ممکن خواهد شد . پس چطور باید معادلة چرخ را حل کرد؟ برای حل این مشکل نیروی جدیدی بنام گشتاور را معرفی می‌کنیم . گشتاور (torque) نیروی چرخی است که حول یک نقطه می چرخد، و با حرف یونانی نمایش داده می شود. گشتاور بصورت نیرو ( F) ضرب در طول بازوی اعمال نیرو (d) تعریف می شود:

همانطور که از فرمول بالا می توان دید ، واحد اندازه گیری گشتاور نیوتن متر ( ) است .

قرقره

قرقره(Pulley) یک ماشین ساده است که از چرخ برای تغییر دادن جهت نیرو و ایجاد مزیت مکانیکی استفاده می کند . قرقرة ساده ( که آنرا در شکل 2-16 می بینید ) دارای مزیت مکانیکی یک است ، چون مقدار جابجایی جسم (‌نیروی مقاوم ) به همان اندازه مقدار جابجایی در سمت نیروی کشنده (‌نیروی محرک )‌است .

شکل 2-16- قرقرة‌ساده

علت استفاده از قرقرة ساده تغییر دادن جهت نیرو است چون معمولاً اعمال نیرو به سمت پایین (‌کشیدن ) ساده تر از اعمال نرو به سمت بالا ( هل دادن ) است

برای اینکه قرقره دارای مزیت مکانیکی بزرگتر از یک شود ، باید میزان جابجایی نیروی محرک را بیشتر از نیروی مقاوم کنیم . برای این منظور می توان از قرقره متحرک استفاده کرد ( شکل 2-17) در قرقرة متحرک بجای ثابت بودن خود قرقره ، یکی از طنابها ثابت است ونیروی مقاوم مستقیماً به قرقره متصل می شود. در این حالت قرقره شبیه اهرم نوع دوم ( نیروی مقاوم بین تکیه گاه و نیروی محرک ) عمل می کند که مزیت مکانیکی آن همیه از یک بیشتر است . درقرقرة متحرک برای جابجا کردن جسم به میزان یک متر بایستی طناب دو متر کشیده شود ( یعنی مزیت مکانیکی آن 2 است )

شکل 2-17- قرقرة‌متحرک

با ترکیب قرقره های ثابت و متحرک می توان به مزیتهای مکانیکی بیشتر از 2 نیز دست یافت . در شکل 2-18 یک قرقرة مرکب با مزیت مکانیکی 3 نشان داده شده است .

چرخ دنده و زنجیر

چرخ دنده ( gear) چرخی است که با محیط دندانه دار که باعث می شود هنگام درگیری با چرخ دنده های دیگر نلغزد . چرخ دنده معمولاً با چرخ دنده های دیگر یا میلة دندانه دار ،درگیر می شود (شکل 2-19) چرخ دنده ها برای انتقال نیرو یا گشتاور از یک محور به محور دیگر بکار می روند .

شکل 2-18- قرقرة‌ مرکب

شکل 2-19- چرخ دنده و زنجیر

در این حالت سیستم چرخ دنده ها بصورت یک اهرم دوار عمل می کند. که مزیت مکانیکی آن از تقسیم شعاع چرخ دنده ها بدست می آید.

در عمل بجای استفاده از شعاع چرخ دنده ، در محاسبة مزیت مکانیکی یک سیستم چرخ دنده از تعداد دنده ها استفاده می شود . چون بسادگی می توان نشان داد که تعداد چرخ دنده های یک چرخ دنده با شعاع آن متناسب است .

بدین ترتیب:

که در آن B,A تعداد دنده های دو چرخ دنده هستند .‌گاهی ( بویژه در زمانی که با میلة دندانه دار سروکارداریم ) بجای تعداد دنده ها از محیط چرخ دنده ها نیز استفاده می شود :

یکی از کاربردهای مهم چرخ دنده ها تغییر دادن سرعت چرخش است . که این کار معمولاً‌توسط دو (‌یا چند ) چرخ دندة هم محور که تعداد دنده های متفاوتی دارند ، صورت می گیرد.

برای انتقال نیرو بین دو چرخ دنده که تماس فیزیکی ندارند از زنجیر (Sprocket) استفاده می شود زنجیر می تواند دندانه دار باشد ( زنجیر دو چرخه ) یا برای انتقال نیرو اصطکاک استفاده کند ( تسمه پروانه ).

مفصلهای پیچیده

با اینکه مفصلهای چرخشی ، خمشی و لغزشی کارایی و کاربردهای زیادی دارند ، اما گاهی نوع حرکت بگونه‌ای است که باید از مفصلهای پیچیده تر برای اتصال قطعات متحرک به یکدیگر استفاده کرد در این قسمت چند مفصل پیچیده را معرفی میکنیم .

توپی :

توپی (ball and socket) یکی از مهمترین مفصلهای مرکب است . در مفصلهای ساده مانند چرخشی و خمشی ، دو قطعة مفصل نسبت به یکدیگر دارای یک حرکت ثابت و ساده هستند ، اصطلاحاً گفته می شود که این مفصلها دارای یک درجة‌آزادی هستند . توپی تشکیل می شود از یک کرة صیقلی فولادی ( بخش متحرک مفصل ) که در یک حفره با همان ابعاد ( بخش ثابت مفصل ) قرار گرفته است ، و هر بازوی مفصل به یکی از این دو قطعه متصل می شود ( شکل 2-25) توپی حرکت در چند بعد را فراهم می آورد . و دارای دو درجة‌آزادی است .مفصل شانه و لگن حاضر نمونه هایی از توپی در انسان است .

شکل 2-25- انواع مفصلهای توپی

مشکل مهم توپی آن ست که اصطکاک در این مفصل بالا است چون ( برای جلوگیری از جدا شدن قطعات مفصل (‌کره و محفظه نگهدارندة آن باید کاملاً با یکدیگر بچسبند )

مفصل یونیور سال

یکی دیگر از مفصلهای مرکب – که د رواقع از ترکیب دو مفصل چرخشی ساده تشکیل شده – مفصل یونیورسال (‌universal) است ( شکل 2-26)

قطعة اصلی در مفصل یونیورسال محور صلیبی شکل آن است ، که هر بازوی این صلیب به یکی از مفصلهای چرخشی متصل شده و امکان حرکت در جهات مختلف را فراهم می آورد . مفصل یونیورسال نیز دارای دو درجة‌آزای است یکی از معروفترین کاربردهای مفصل یونیورسال در انتقال حرکت از جعبه دندة اتومبیل به دیفرانسیل است که به افتخار ریاضیدان ایتالیایی جرونیمو کاردانو – کاردان (Cardan) نامیده شده است .

شکل 2-26- مفصل یونیورسال

مشکل اصلی مفصل یونیورسال ارتعاش آن در سرعتهای بالا ست اگر دو قطعة مفصل یونیورسال در یک امتداد باشند ؛ مشکلی پیش نمی آید .اما از انجائیکه مفصل یونیورسال اساساً برای انتقال حرکت در دو صفحة مختلف بکار می رود ، چنین موقعیتی کمتر پیش می آید در این حالت مفصل منحنی های پیچیده‌ای در فضا رسم میکند. که در سرعتهای بالا باعث ارتعاش آن خواهد شد . برای حذف ارتعاش در سرعتهای بالا نوع ویژه‌ای از مفصل یونیورسال طراحی شده است که به مفصل سرعت ثابت Constant velocity) معروف است

مفصل فنری

یکی از مفصلهای خاصی که می تواند حرکات پیچیده‌ای در فضا تولید کند ( و دارای درجات آزادی متفاوت باشد )‌مفصل فنری ( Spring) است مفصل فنری ساختمان نسبتاً ساده‌ای دارد که در آن دو بازوی مفصل توسط یک فنر به یکدیگر متصل شده اند .(شکل2-27)

شکل 2-27- مفصل فنری

تغییر شکل حرکت

اغلب منابع تولید قدرت مکانیکی ( مانند موتورها ) حرکت دورانی تولید می کنند ولی بسیاری پیش می آید که به انواع دیگری از حرکت نیاز داریم که باید آنرا از طریق مکانیزمهای خاص تویلد کنیم در این بخش می خواهیم دربارة مکانیزمهای تغییر دهندة شکل حرکت صحبت کنیم .

شکل 2-48- ضامن باعث جلوگیری از حرکت معکوس می شود

مکانیزمهای با یک نقطه اتصال

مکانیزمهای با یک نقطة‌اتصال ماشینهای ساده‌ای هستند که بسادگی جهت حرکت را عوض می کنند مثلا، اهرم می‌تواند حرکت رو به پایین را در جهت مقابل به حرکت رو به بالا تبدیل کند و بالعکس


بررسی روان کاری هیدرواستاتیکی

در روان کاری هیدرودینامیکی ، سطح یاتاقان کاملاً توسط یک فیلم سیال از یکدیگر جدا می شوند با استفاده از عمل لغزندگی جدایی فیلم به دست آمد تا با مکانیزم تولید فشار گوه فیزیکی ، فشار داخل یاتاقان توسعه یابد چنین یاتاقانهایی علاوه بر داشتتن نیروی بازدارنده از حرکت، اصطکاکی پایین و نیز افت قدرت پایین ،از امتیاز بسیار خوب ساده بودن ،برخوردارندلذا قابل اع
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 1058 کیلو بایت
تعداد صفحات فایل 31
بررسی روان کاری هیدرواستاتیکی

فروشنده فایل

کد کاربری 8044

روان کاری هیدرواستاتیکی

1-2 مقدمه

در روان کاری هیدرودینامیکی ، سطح یاتاقان کاملاً توسط یک فیلم سیال از یکدیگر جدا می شوند. با استفاده از عمل لغزندگی جدایی فیلم به دست آمد تا با مکانیزم تولید فشار گوه فیزیکی ، فشار داخل یاتاقان توسعه یابد. چنین یاتاقانهایی علاوه بر داشتتن نیروی بازدارنده از حرکت، اصطکاکی پایین و نیز افت قدرت پایین ،از امتیاز بسیار خوب ساده بودن ،برخوردارند.لذا قابل اعتماد و ارزان بوده و نگهداری آنها راحت است ،یاتاقانهای کشویی روان کاری شونده به صورت هیدرودینامیکی خود عمل کننده هستند ،اگر چه که از معایب مهم و به خصوص زیر ، برخوردارند:

1-اگر سرعت طراحی پایین باشد ،ممکن است تولید فشار هیدرودینامیکی لازم ، مکان پذیر نباشد.

2- روان کاری فیلم سیال ممکن است در زمان شروع ،تغییر جهت داده و یا قطع شود

3- در یاتاقان ژورنال در نظر گرفته شده در فصلهای گذشته ، محور به طور هم مرکزی کار کرده و موقعیت یاتاقان با بار تغییر می کند؛ بنابر این دلالت بر شقی پایین دارد.

در یاتاقانهای روان کاری شونده هیدرواستاتیکی (همچنین «تحت فشار از خارج» نامیده می شود) ، سطوح یاتاقان توسط یک فیلم سیال نگه داشته شده توسط یک منبع فشار در خارج این یاتاقان جدا می شوند . یاتاقانهای هیدرواستاتیکی معایب 1 و 2 را نداشته و تغییرات موقعیت یاتاقان با بار ذکر شده در معایب 3 را تقلیل می دهند . مشخصه های یاتاقانهای روان کاری شونده به صورت هیدرواستاتیکی عبارتند از :

1- اصطکاک خیلی خیلی پایین .

2- ظرفیت حمل بار بسیار بالا در سرعتهای پایین.

3- دقت جایگذاری خیلی بالا در سرعت بالا و کاربرد بار سبک.

بنابر این یاتاقانهای روان کاری شونده هیدرواستاتیکی زمانی مورد استفاده قرار می گیرند ، که نیاز مبرمی به آنها باشد؛ مثل تلسکوپهای بزرگ و واحدهای جستجو کننده رادار ، که در آنها بار های خیلی خیلی سنگین و سرعتهای خیلی خیلی پایین استفاده می شوند ، یا در ماشین ابزارها و ژیروسکوپها ،که در آنها سرعتهای خیلی بالا ، بارهای سبک و روان کننده های گازی استفاده می شوند .

2-2 تشکیل فیلم سیال

در یک سیستم یاتاقان ساده بدون فشار قسمت چرخنده که تحت تأثیر بار است، روی کفشک یاتاقان قرار داده می شود . ضمن افزایش فشار منبع فشار در تورفتگی کفشک نیز افزایش می یابد . فشار قسمت تورفتگی تا نقطه ای افزایش می یابد که فشار روی قسمت چرخنده بر روی مساحتی برابر با مساحت تورفتگی کفشک به اندازه کافی برای بلند کردن بار باشد . این ، به طو ر متداول (بالابری فشار ) p1 نامیده می شود . درست بعد از این که قسمت چرخنده از کفشک یاتاقان جدا می شود ، فشار تورفتگی کمتر از مقدار لازم برای بلند کردن چرخنده یاتاقان است (prl) . پس از بلند شدن ، جریان به داخل سیستم وارد می شود . بنابر این یک افت فشار بین منبع فشار و یاتاقان و از (در عرض محدودکننده ) تورفتگی تا خروجی یاتاقان وجود دارد . اگر بار بیشتری به یاتاقان اضافه شود ، ضخامت فیلم کاهش یافته و فشار تورفتگی بالا خواهد رفت تا فشار انتگرال گرفته شده در عرض زمین با بار برابر شود . اگر بار سپس به کمتر از مقدار اولیه تقلیل یابد ضخامت فیلم تا مقدار بالاتری افزایش خواهد یافت و فشار تورفتگی مطابق با آن کاهش می یابد . بار بیشینه که می تواند توسط کفشک حمایت شود ، از لحاظ تئوری ، وقتی که فشار تورفتگی برابر با فشار منبع است ، به دست خواهد آمد اگر باری بزرگتر از این به کار گرفته شود ، یاتاقان خواهد نشست ، و همان طور نشسته باقی می ماند تا بار تقلیل یابد و دوباره توسط فشار منبع حمایت می شود.

شکل 1-2 تشکیل فیلم سیال در یاتاقان هیدرواستاتیک.(الف)پمپ خاموش

(ب)فشار در حال افزایش،(ج)فشار ضرب در مساحت تو رفتگی برابر با

بار عمودی اعمال شده،(د)یاتاقان در حال عمل،(ه) بار افزوده شده،(و)بار

کاهش داده شده

3-2 بررسی جریان روغن از میان دو صفحه موازی

v

Y

y

V

F3

f3

h f2 f1

f4

x

فرضها: شکل 2-2

1- سیال نیوتنی و غیر قابل تراکم است.

2- جریان آرام و یکنواخت است .

3- نیروهای اینرسی ناچیز و نیروهای جسمی نیز کوچک هستند و در مقایسه با نیروهای فشار

4- فرض شود هیچ لغزشی بین روان کار و سطوح مرزی وجود ندارد.

5- ویسکوزیته ثابت است.

6- جریان فقط در امتداد محور x است و نتیجتاً فشار p فقط تابع x و T تابع y است.

اگر عرض المان در امتداد b,z فرض گردد داریم:

(1-2)

(2-2)

(3-2)

برای سیال نیوتنی داریم:

(4-2)

شرایط مرزی :

1- با فرض اینکه هیچ لغزشی بین روان کار و سطوح مرزی وجود نداشته باشد داریم:

@ ,

@ ,

جا گذاری در معادله بالا :

(5-2)

هنگامی که فشار حداکثر است:

و

اگر Q حجم روان کار که در جهت x جریان دارد ، تعریف شود ، با استفاده از پهنای b در

جهت z ، حجم روان کار را می توان به دست آورد:

(6-2)

اگر در شعاع r ، المانی با عرض dr و به طول 2πr در نظر بگیریم ، از فرمولی که قبلاً برای محاسبه حجم روان کار بین دو صفحه موازی به دست آمده استفاده کنیم، به جای dx مقدار dr و به جای b ، 2πr را قرار دهیم و برای فیلم روان

شکل3-2-یاتاقان هیدرواستاتیکی

کار مقدار ثابت h 0 در نظر بگیریم و سرعت سطح متحرک را صفر در نظر بگیریم ، (v=0) داریم:

(7-2)

و برای مقدار ثابت Q داریم:

(8-2)

شرایط مرزی:

در سطح حوضچه تا سطح R0 فشار برابر فشار ورودی P0 فرض گردد.

(9-2) (10-2)

2-3-2 محاسبه ظرفیت تحمل بار:

(11-2)

بهینه سازی قطر حوضچه: 4-3-2

(12-2) 2) (13-

(E1P) توان لازم برای پمپ کردن روان کار (قدرت پمپ) : 5-3-2

(14-2)

اگر رابطه توان پمپ را برای h0 ،w ،A ، معین بررسی کنیم می توان حداقل قدرت پمپ را نسبت به قطر حوضچه به دست آوریم. دیده می شود که قدرت پمپ وقتی حداقل است که ضریب kpq حداقل باشد . اگر برای مقادیر مختلف تغییرات ضریب kpq را بررسی کنیم ، می توانیم نسبت حدی جهت حداقل کردن قدرت پمپ را مشخص کنیم .

شکل 4-2

وقتی نسبت برابر 0/5 است ، مقدار kpq حداقل می باشد . برای حالت هندسی خاص مزبور، قدرت پمپ حداقل است .

6-3-2بهینه سازی ضخامت فیلم :

نیروی اصطکاکی متعلق به المان سطح 2πrdr

(15-2)

u=rw

گشتاوردر اصطکاکی کل ، عمدتاً به ناحیه خارج از سطح حوضچه می شود:

(h=h0)

(16-2)

4-3-2قدرت اصطکاکی : E 1f

(17-2)

کل توان لازم : با جمع کردن توان پمپ و توان اصطکاکی داریم:

(18-2)

اگر مشتق E 1t را نسبت به h0 برابر صفر قرار دهیم h0=0/004167 in ، به دست می آید. لازم به ذکر است که عملاً ضخامت فیلم در حدود 0/006 in نگه داشته می شود . در این صورت ازدیاد دما در فیلم کمتر است.

5-3-2 ازدیاد دمای روغن

برای تخمین بالا رفتن دمای روغن فرض میکنیم کل توان اصطکاکی به گرما تبدیل می شود:

(19-2)

6-2 تنظیم کننده های جریان

در یک سیستم روانکاری اکثراً چندین یاتاقان از یک پمپ تغذیه می کنند . همچنین حوضچه های متعدد روغن اکثراً از یک پمپ تغذیه می کنند ، زیرا استفاده از پمپ مستقل برای هر یاتاقان و یا هر حوضچه مستلزم هزینه زیادی می باشد . البته در این صورت لازم است نسبت به توزیع روغن تدابیر فنی لازم به عمل آید تا به هر قسمت به اندازه کافی روغن برسد . برای این منظور محدود کننده جریان در انشعابات فرعی نصب می شود که ساده ترین نوع آنها شامل عبور و یا پاشش از سوراخ و یا از یک لوله کم قطر ظریف (کاپیلاری) می باشد . در این دو نوع محدود کننده افت فشار با مقداردبی متناسب است . وقتی بار یاتاقان افزایش پیدا کند ضخامت فیلم کاهش می یابد و در نتیجه مقدار دبی پایین می آید و این افت فشار کمتری را در تنظیم کننده به دنبال خواهد داشت . در نتیجه فشار فیلم در یاتاقان بالا خواهد رفت (فشار انشعاب اصلی p s یعنی فشار ورودی تنظیم کننده ثابت می باشد ) این عمل نقش یک تنظیم کننده را در جبران فشار نشان می دهد. هر گاه به فرض جریان روغن در یاتاقان متوقف باشد ، فشار فیلم با فشار p s برابر خواهد بود ، زیرا که در تنظیم کننده افت فشار نداریم . پس در این حالت فرضی هم فشار روغن در حوضچه وضع خوبی خواهد داشت .برای سیستم نشان داده شده در شکل (4-2) یک پمپ برای چندین یاتاقان فعالیت می کند . شیر اطمینان B فشار ثابت ps تأمین می کند . وقتی فشار پمپ بیش از اندازه بالا باشد ، بدیهی است که مقدازی از روغن خروجی پمپ به منبع برمی گردد که با QR نشان داده شده است . در بیشتر اوقات QR صفر است . همان طور که قبلاً گفته شد محدود کننده های جریان برای توزیع سهم هر یاتاقان به کار می رود و اگر فقط یک یاتاقان داشته باشیم دیگر این وسیله لازم نخواهد بود . در این حالت معمولاً از شیر کنترل جریان استفاده می شود . یکی از امتیازات محدودکننده جریان از نوع سوراخ و یا کاپیلاری است که ذرات معلق روغن آزادانه از آن عبور می کنند و گرفتگی پیش نمی آید ، در صورتی که در مورد شیر کنترل جریان وضع چنین نیست . این وسیله به ذرات معلق روغن حساسیت داشته و در صورت استفاده از آن وجود یک فیلتر مناسب ضروری است .

شکل 4-2-سیستم یاتاقان هیدرواستاتیکی با خوضچه متعدد روغن

شکل 5-2-محدود کننده جریان از نوع کاپیلاری قابل تنظیم

یک نوع محدود کننده کاپیلاری قابل تنظیم در شکل (5-2) ملاحظه می شود . در این وسیله از پیچ با رزوه مستطیلی استفاده شده است و فضای ایجاد شده بین استوانه و پیچ یک کاپیلاری مارپیچی ایجاد می کند . با پیچاندن این پیچ طول کاپیلاری تغییر می کند . از این وسیله می توان در مواردی که با یک پمپ به چندین محل روغن فرستاده می شود استفاده کرد .


بررسی جنس های فریم دو چرخه با تمرکز به روش های ساخت فیبر (الیاف)

20 سال قبل انتخاب فریم دوچرخه جاده ایی ساده و محدود بود برای سبکی وزن و راندن روان جنس هایی از قبیل (Cclumbus sL) فولاد ورق نازک استفاده می شد دوچرخه سواران سنگین وزن که استحکام بیشتری برای فریم دوچرخه طلب می کردند، سنگینی و سواری تنوانستند با در آمیختن لوله ها (‌در مثال های مورد نیاز از لوله های مستحکم ما بقی مکان ها لوله های سلبته را احساس دوچر
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 23 کیلو بایت
تعداد صفحات فایل 33
بررسی جنس های فریم دو چرخه با تمرکز به روش های ساخت فیبر (الیاف)

فروشنده فایل

کد کاربری 8044

جنس های فریم دو چرخه با تمرکز به روش های ساخت فیبر (الیاف )

کربن‌:‌Teehnical white paper

مقدمه :

20 سال قبل انتخاب فریم دوچرخه جاده ایی ساده و محدود بود. برای سبکی وزن و راندن روان جنس هایی از قبیل (Cclumbus sL) فولاد ورق نازک استفاده می شد. دوچرخه سواران سنگین وزن که استحکام بیشتری برای فریم دوچرخه طلب می کردند، سنگینی و سواری تنوانستند با در آمیختن لوله ها (‌در مثال های مورد نیاز از لوله های مستحکم ما بقی مکان ها لوله های سلبته را احساس دوچرخه سواری را متوازی کنند.

برای آلومینیوم انتخاب در بین (limber Alan) یا (Vitusc) یا یک (Klein) سفارش فوق سنگین و بسیار گران بود. چند ماده بیگانه مانند فیبر کربین (Graftek) و (tele dyne titanium) باعث سواری با شکوهی می شد حس کنجکاوری گران قیمت و زارای سابقاتی طولانی در شکستن فریم و فرمان پذیری ناموزون بودند.

3- اکتشاف مواد و بازار در حال رشد تکنولوژی پیشرفته برای محصولات دوچرخه سازی تکامل فریم های دوچرخه را در دهه 1980 شتاب داد. Cannondale وTrek اجازه همه گیرشدن فریم های آلومینیومی را به صنعت دادند که تا حدی کم قیمت تراز تیتانیوم بود و فیبر کربن به معنوان جرقه ایی در موادر مهندس این دوره قلمداد گردید. لذا زندگان فولاد با آلیاژ های مقاوم تر و دارای عملیات حرارتی و اشکال پیچیده و قطرلوله های غیر استاندادر به عرص همبارزه بازگشتند تا بتوانند وزن را بر خلاف راحتی و بازده دهی کاهش دهند.

4- امرزوه قدرت انتخاب بیشتر طبیعتاً پیچیدگی و سرگیجه گی بیشتر وجود دارد. اگر کسی بخواهد بهترین ماده برای فریم دوچرخه را سوال کند، یک جواب حساب شده نیاز دارد زیرا چگونه استفاده کردن ماده داده شده می تواند مهمتر از نوع ماده استفاده شده باشد.

5- فریم دوچرخه ایده آل برای یک دوچرخه سواری باید متناسب با ابعاد وی و همچنین سبک باشد. این فریم باید به خوبی تکان های مسیر را جذب کند اما باید به حضور موج دار فرمان پذیر تا حد 1: ( به خاطر سفتی کناری) و نیروئی نقصان نیافته برای پدال رانندگی مهیامی کند ضربه ها و پیچش های غیر منتظره که خود مستلزم پرداخت جذاب بوده ومقاوم در برابر خوردگی یا المان های نفوذی است

واقعیات ماده : اسیکل ، آلومینیوم،‌تیتانیوم و فیبر کربن همه برای بدست آوردن حد بالای مقیاس به کار می روند ولی در استحکام سختی وزن مقاومت به شکست خوردگی و غیره متفاوت هستند برای مثال استفاده از آلومینیوم یا تیتانیوم در ابعاد لوله مشابه در قالب یک فریم استیل سنتی باعث کاهش وزن شده اما تولید انعطاف پذیری بیش از اندازه می کند. بنا به این فریم های فلزی غیر آهنی معمولاً قطر لوله ایی بیشتر از استیل دادند که برای بیشتر کردن صلیب میباشد.

2) فریم های فلزی معمولاً با یک بار فوق سنگین تکی دچار شکست نمی شوند اما به خاطر تنش های کم اندازه اما تکرار پذیر ( که معروف به خستگی است) استیل و تیتانیوم دارای تعریفی به عنوان کمترین حد خستگی هستند که اگر تنش ها کمتر از این حدود باشد این نیروهای کوچک عموماً طول عمر خستگی فریم را کوتاه نمی کنند. آلومینیوم دارای چنین حد مشخص شده پایه ای نیست بنابراین هر دوره تنش هر چه قدر هم که کم ماده را به شکست ناشی از خستگی نزدیک تر می کند

- طراحان این محدودیت را تشخیص دادند و مبادرت به “زیاده سازی” فریم هایشان برای استفاده مادام العمر کردند.

3- استحکام بالای تیتانیوم وزن سبک، قابلیت ارتجاعی و مقاومت در برابر خوردگی باعث گزینش آن به عنوان ماده مناسب فریم شد. با این وجود به خاطر فلزی بودن آن بیشتر خواص مشابه مکانییک که باعث محدودیت استیل و آلومینیوم می شد، تیتانیوم را بی نگذاشت. فلزات در تمام جهات به طور مساوی مستحکم و سخت هستند( خاصیتی که “ایزوتروپی” نامیده می شود) زمانی که هندسه یک برش عرضی از لوله ای فلزی برای ازیابی استحکام یا سفتی مورد نیاز در یک صفحه تعیین گردید، یک مهندس آزادی خود را برای ارزیابی مطالبات مختلف برای استحکام یا سفتی در دیگر صفحات از دست می دهد. در لوله های فلزی با تنظیم قطر و ضخامت دیواره برای مواجه با استانداردهای خمش،‌به طور خودکار سفتی خمشی جانبی و پیچی تعیین می گردد.

4- فیم های ف لزی در مقایسه با کامپوزیت ها فقط در یک موضوع متفاوت هستند کامپوزیت ها شامل الیاف تقویت کننده هستند که شبکه مواد جاسازی شده اند. معروفترین کامپوزیت، شیشه که به معنی رزین پلی استر( به عنوان ماتریس یا زمینه) تقویت شده با پشم شیشه ((fiberglass است. کامپوزیت های پیشرفته شامل فیبرهای مهندسی شده نظیر کربن ، پلی مر،‌فلز یا سرامیک می باشند معمولاً این فیبرها با رزین های ترموست مانند اپوکسی بارور شده اند. دیگر مواد ماتریسی حاوی ترموپلاستیک، فلزات و حتی سرامی کها می باشند. این کامپوزیت های پیشرفته ساختارها را مستحکم تر و صلب تر از فلزات هم اندازه می کنند اما با وزنی بسیار کمتر!

از این گذشته اگر مواد ماتریس با یک واکنش شیمیایی یا حرارت سخت کاری می شوند، فیبرهای رزینی خیس خورده می توانند واقعاً به هر شکلی فرم دهی و ق الب ریزی شوند.

5- به خلاف فلزات این تروپیک، کامپوزیت ها ناهمسانگرد ((anisatrapic هستند. استحکام و سفتی آنها تنها در جهت محور فیبرها تحقق یافتنی است که با هر الگویی می تواند آراسته شود. بنا به این برای جذب تنش های متعینیه و متفاوت از یک فریم دوچرخه، کامپوزیت ها می توانند به صورت چند لایه با زوایای مختلف برای هر کدام استفاده شوند. این می توانند استحکام را در جائی که نیاز است قرار دهد همچنان که وزن را حداقل می کند.

6- در امتداد لوله های گرد سنتی و طراحی فریم های قالبی (lug frame) فریم های کامپوزیت قابلیت قالب ریزی با استفاده از کیسه های داخلی (internal bladder) و فوم به صورت تک قطعه ایی و ساختمانی (Monocoqne) یا فریم های چند مقطعی را دارند. همچنین این مواد میتوانند در فشار بالا و به صورت فرآیند تورمی، لوله های فریم را با قطعه کامل ترکیب کنند.

Industryparallel : (توازن های صنعت ) نظیه دیگر صنایع ورزشی در آینده صنعت دوچرخه سازی از فلزات جدا میشود. ادامه پیشرفت ها در صنعت و فضا به صنایع اتومبیل سازی و صنایع قایق سازی، تقریباً نقش کامپوزیت ها را به عنوان ماده ای بنیادی در آینده تضمین کرده اند. دیگر صنایع کالاهای ورزشی جائی که مواد جدید به جای گزین ماد قدیمی شده اند. شامل تنیس تیراندازی با تیرو کمان اسکی، قایق سواری، گلف و ماهی گیری می باشند. کامپوزیت ها جایگزین مواد قبلی شده و عاقبت به کاهش قیمت تا سطوحی قابل خرید برای همه انجامیده است.

مواد جدید به دلایل متعددی جایگزین موادی که قبلا برقرار بوده شده اند، در کالاهای ورزشی، جانشینی مواد نو به خاطر افزونی بازدهی در عملکرد می باشد برای نمونه راکت تنیس که تنها و تنها از چوب ساخته می شد دارای جذب ارتعاش ممتاز و اما مکان تورم و چروکیدگی به خاطر آب و هوا و انحراف قلب تیغه مقدار کشیده گی زه آن وجود داشت. چونب که طبق ضوابط به اندازه کافی مستحکم بود دارای وزن سنگینی بود. راکت هائی از جنس استیل لوله ایی و تALT و اوایل دهه 1970 متداول شدند. که از چوب شبکه بدون تأثیر از آب وهوا و دارای قدرت پتانسیلی بیشتر به هنگام ضربه بودند.

با این وجود، احساس فلز برای استفاده کننده گان دلچسب نبود و تعدادی از ضربه ناگهانی این راکتها به دست و بازویشان انتقال میداد ناراحتی بودند.

4- راکت های کامپیوزیتی در اواخر دهه 70 به بازار آمد و همه چیز را نتیجه داد. این راکت ها دارای حالت ارتجاعی، و جذب شوک مثل چوب و مصونیت آب و هوایی بودند و البته سبک، ظرف فاسال، راکت های کامپیوزیتی در همه چا در دسترس قرار گرفتند که دارای قیمتها پایینی بودن دو چوب به طور کامل بلااستفاده شد هم اکنون %95 راکت های تنیش ساختاری کامپوزیتی دارند.

5- فریم دوچرخه کامپوزیتی تبدیل به یک پدیده آمریکایی شده است، چون تکنولوژی از صنایع هواپیماسازی و قایق سازی پدیدار گشت. ساخت و تولید کامپوزیت ها نیازمند کارشناسی فنی و سرمایه برای توسعه محصول این محصولات معمولا باید با آخرین تکنولوژی وارد بازار شوند. از این رو تعداد کمی کمپانی دوچرخه سازی توسعه یافته راغب به دست یابی تکنولوژی برای توسعه ابتکاری فریم های کامپوزیتی وجود دارند.

6- بسیاری از مهندسین دوچرخه ساز رواپرداز در کامپوزیت ها از حالتی مناسب برای خلق محصول های قابل فروش در بازار بی بهره بودند. با متقاعد شدن افرادی بیشتر که کامپوزیت ها حتی می توانند عملکرد دوچرخه را افزایش دهند، این طرح ها بالاخره به عنوان انتخابی ممتاز شناخته شد.

مزایای کربن

فریم دوچرخه به طور قابل توجهی ساختاری پیچیده با مشخصه های اجرایی که شامل نسبی، صلبیت ، دوام و جذب ضربه ناگهانی می باشد. فریم های Al و ‏Ti به خاطر به چالش کشیدن فریم های استیل در حداقل 2 بخش اجرائی : دیسکی و مقاومت به خوردگی مرسوم شدند. اما در خرین سطوح تکنولوژی صنعتی ، کامپوزیت ها تقریباً تمامی فریم های فلزی در تمامی بخش های اجرایی تحت الشعاع قرار دادند.

2- ترکیب متالورژیکی یک tube فلزی نمی تواند در طول لوله تغییر کند. در مقابل کامپوزیتها میتوانند به طور نامحدودی در طول لوله متغییر و گوناگون باشند. مانند تغییر در زوایای الیاف، تفاوت در لایه ها و ضخامتشان و تفاوت در آمیزش مواد. بنابراین خواص نهایی محصول ساخته شده از کامپوزیت ها می تواند متناسب با مشخصاتی دقیق باشد. همچنین ساخت لوله کامپوزیتی با درجات مختلفی از سفتی آسانتر از ساخت نوع فلزی آن می‌باشد. ضمناً هزینه ماشین کاری برای تولید لوله فلزی به مراتب بیشتر از ساخت نوع کامپوزیتی می باشد.

3- لوله های کامپوزیتی معمولا با یک میله (یا ‌فلزی معمولا از جنس فولاد سردکاری شده) توسط رشته مارپیچ (که بافت آن در زوایای مختلف می تواند باشد) فرم دهی میشوند. این فرآیند لفاف نوردی (roll wrapping) یا قیطان دوزی (braiding) نامیده می شود. روش دیگری که کشش رانی (pultrusion) نامیده می شود الیاف ها را از میان یک قالب گرم شده که ماتریس ترموپلاستیک را ذوب می کند کشیده می شود. هر سازنده ساختار مخصوص به خود شامل تعداد لایه ها و جهات الیاف متفاوت را دارد که برای خلق ترکیبی مطلوب از استحکام، وزن و سفتی است. این از محاسن فوق العاده فیبر کربن است. در فلزات قدرت انتخاب بسیار محدود اما در فیبر کردن تقریبا نامحدود می باشد.

4- بافت بدنه دوچرخه کار جدیدی نیست، برای سالها این عمل با نام فرآیند ضربه زنی (butting) انجام می شده است که لوله ها در اتصالات برای تحمل تنش ضخیم تر و در محدوده مرکزی طول لوله برای کاهش وزن نازکتر می شده اند.

آیا می توانستند اندازه و شکل هر لوله را به طور دقیق متناسب با بارهای پیش بینی شده در پدال زدن و تکان های وارده ‌در نظر بگیرند آیا ماده بدنه می توانست به طور دقیق در هر جا که لازم می بود توزیع شود

چه می شد اگر صلبیت هر لوله، در خلال فرآیندهای شکل دهی و یا فرزکاری از یک سطح خمشی تا دیگری یا از انتهای یکی تا بعدی تغییر کند. فریم برای بارهای جانبی ناشی از پدال زدن می توانست صلب ساخته شود. اما برای تحمل تکان های مسیر، در سطح عمود تنظیم می شد. شکل دهی یا براده برداری یک فریم به این روش تقریباً غیر ممکن می‌باشد. اما کامپوزیت ها به سادگی می توانند به عضوهای ساختاری و اصلی با مقاطع عرضی پیچپدیه قالب ریزی شوند.

5- تصویر 1 نشان دهنده‌ی سفتی ویژه 4 ماده اصلی استفاده شده در فریم دوچرخه است. سفتی ویژه در قالب مدول کشی شامل چگالی یا به طور ساده تر، نسبت سفتی به وزن ، تعریف می شود. ممکن است پرسیده شود که اگر فیبر کربن دارای چنان نسبت سفتی به وزن بالایی است، چرا از حالت فعلی سبکتر نیستند جواب این است که فیبر کربن دارای جنس عظیمی در کشش است اما در عمل هدایت تمامی تنش های تحمیلی بر روی یک ساختار مشکل است. این بستگی به طراح دارد که چقدر آن را مورد توجه قرار می دهد و حداکثر تلاشش را برای بارگذاری فیبرها در کشش انجام دهد.

6- کامپوزیت ها می توانند به عضوهایی ساختاری و اصلی با مقاطع عرضی پیچیده و با سهولتی نسبی قالب ریزی شوند. همچنین دارای بعضی خواص مکانیکی بسیار مؤثر می باشد. آلومینیوم 6061 و سری 7000 که در فریم های دوچرخه استفاده می شود تقریبا یک سوم سنگینی فولاد، یک سوم سفتی آن و در بهترین شرایط حدود 80% استحکام آلیاژ crmp 4130 استفاده شده در بیشتر فریم های دوچرخه را داراست. تیتانیوم تقریباً دو سوم وزن فولاد ، نیمی از سفتی آن و حدود 60% استحکام فولاد را داراست. کامپوزیت فیبر کربن که بیشتر توسط سازندگان دوچرخه استفاده می شود کمتر از یک چهارم وزن فولاد را دارد و در رابطه با سفتی حدود چهاربرابر سفت تر (بر پایه وزن به وزن) و تقریباً چهار برابر مستحکم تر در کشش می باشد. فیبرکربن همچنین عمر خستگی بیشتر از فولاد، تیتانیوم و یا آلومینیوم دارد و رزین معمول که برای مقید کردن رشته ها استفاده می شود هم خاصیت میرا کردن ارتعاشات خوبی دارد.

تصویر 2

7- دمپ ارزش و تکان ، دو فاکتور مهم است که دوچرخه سواری را متأثر می کند. با این وجود این دو از موضوعاتی همبسته که در علم مواد کمتر فهمیده شده و به آن توجه شده است که متغیرهای زیادی در آن دخیل هستند مثل : چگونگی جذب و پخشاندن انرژی لرزشی توسط اتمها، چگونگی ساخت ساختار، نوع رنگ کاری و پوشش دهی سطح اعمال شده؛ که پیش بینی چگونگی واکنش ساختار به لرزش وارد آمده مشکل است جذب ارتعاش کامپوزیت ها ممتاز در بین انواع فلزات است که دلیل ترجیح انتخاب این ماده برای فنرهای اتومبیل مسابقه و هواپیماهای پیشرفته همین است. کیفیت راندن روان از اولین نکاتی است که مردم در مورد فریم های دوچرخه مورد توجه قرار می دهند.

4- برنامه های تحلیلی پیچیده «المان محدود» و تئوری سطح لایه لایه شده (Laminate – plate theory) برای تعریف خواص ساختار کامپوزیت ها کمک کننده هسته تفاوت ذاتی بین کامپوزیت ها و فلزات این است که تولید کامپوزیت ها به صورت ورقه ای یا لایه ای و به طور جهتی می باشد. اتصال دو رویه و قدرت لایه لایه شدن (delamination) یا انفکاک (separation) در برابر بارهای فشاری و برشی از مواردی است که هنگام طراحی کامپوزیت پیشرفته باید مورد توجه قرار گیرد. اطلاعات برای نمایاندن احتیاجات گوناگون دوچرخه ضروری است. کامپوزیت ها متفاوت با فلزات هستند بدین صورت که بارهای مساوی را در تمام جهات تحمل نمی کنند. اما در تحمل بار کششی ممتاز هستند. کامپوزیت چیزی شبیه بسته ای از رشته ها ، غوطه ور در لایه ای از چسب یا رزین است. این بسته تحمل وزن بیشتر، خمش کمتر، را در صورتی که از دو سر کشیده شود یا به صورت تخته دایو (تخت، شیرجه) خم شود نسبت به بارگذاری فشاری یا معکوس دارا می باشد. تغییر حالت بسته اتفاق می افتد زیرا استحکام واقعی بسته به خاطر رشته هاست نه رزین. اولین کارکرد رزین تثبیت و استقرار الیاف در محل انتقال بارها در میان الیاف، محافظت از الیاف در برابر نیروهای محیطی و اعطای مقاومت به ضربه به ساختار است. قدرت تحمل بار سمتی طبیعی الیاف، قوانین طراحی ساختاری را تغییر داده است.

مقایسه مواد استفاده شده در دوچرخه ها

تاریخچه فریم های فیبر کربن

خواص چشمگیر کامپوزیت ها راه خود را به صنعت دوچرخه سازی هموار نمود. فریم های فیبر کربن اولین بار در اواسط دهه 1970 ظهور کرد در دهه 1980 در قالب فریم های فیبر کربن و تعداد کمی از قطعات بر تعداد آنها افزوده شد و وارد بازار معاملات پیشرفته و کاتالوگ های قطعات شد. اما این تلاشها اکثراً تقلاهایی محدود برای صرفه جویی در وزن بوده و اغلب دچار فقدان مهندسی دقیق و تعهد سازندگان می شدند آخرین ذهنیت اغلب تولیدات فیبر کربنی به صورت غیر قابل قبول، انعطاف پذیر ترد وخیلی گران بود.

در پنجاه سال گذشته فریم های فیبر کربنی ابتکاری زیادی وارد بازار شده است. این فریم ها به طور موفقیت آمیزی در انواع فلزی مشابه را در دو زمینه به چالش گرفتند، یکی وزن و دیگری راحتی سواری. اما حتی بعضی نسخه های قبلی تعدادی از بدنه دارای پیشینه صنعتی در قابلیت اعتماد بودند.

3- با این دلایل قشر وسیعی از صنعت گران بزرگ بررسی فیبر کربن را به عنوان یک پدیده نوظهور ادامه داند.

بعضی از سازندگان با استاندارد قدیم راضی شده بودند‌: دوچرخه بدون فلز. دیگران هم نه تحریک شدند و نه شاید قادر به صرف زمان، انرژی و پول برای یادگیری تکنولوژی کامپوزیت ها و توسعه تکنیک های ساخت کامپوزیت ها بودند شرکتهای مختلفی در کامپوزیت ها با اتصال لوله های کربنی (اکثراً در محدوده زیرزمین) فریم های آلومینیومی و تیتانیومی به نوعی سرسری کاری انجام دادند. تا زمانی که مقدار کمی بهبود در دمپ ارتعاش این نوع فریم ها حاصل شد هم این شرکتها حاضر به استفاده از مزایای یک فریم تمام کربن نشدند.

4- به هر حال کامپوزیت ها از اواسط دهه 1980 پیشرفت های زیادی کردند. رزین ها،‌الیافها و اپوکسی ها قوی تر شدند چیزی که اهمیت بیشتری داشت، تفهیم چگونگی استفاده از این مواد که به طور شگفت انگیزی افزایش یافته بودند در قالب قطعات برای توسعه برنامه های تحلیلی پیچیده بود. کامپوزیت ها بیش از یک تکنولوژی پیشرفته برای صرفه جویی در وزن می باشد اینها مواد ساختاری ممتازی هستند که طرز ساخت دوچرخه را دگرگون ساختند. یک ست فریم کامپوزیتی عملکردی بهتر از نوع فلزی دارد. بعد از طی مراحلی آزمایشی یک ماده ماندگار در این صنعت تبدیل گشت. تعداد کمی از سازندگان مراحل مورد نیاز را گذرانده و تسلطی نسبتاً استوار بر توانایی، پتانسیل ها، و محدودیت های کامپوزیت یافته اند. یکی از اصلی ترین عوامل محرک در پیشرفت کامپوزیت ها با دوچرخه سواری، استفاده دوچرخه های کربنی توسط اشخاص حرفه ای و با تجربه است. برنده 3 دوره مسابقات تور دوفرانس و قهرمان حرفه ای مسابقات جهانی، گرگ لموند (greg lemond) در جستجوی مداوم خود برای عملکردهای بالاتر ، با استفاده از پیشرفته ترین تکنولوژی های موجود کمک شایانی را پیش از هر دوچرخه سوار به این موضوع کرده است جستجوی وی شامل استفاده از دوچرخه های کربنی در اکثر مسابقات حرفه ای پراعتبار جهانی می گردید. گرگ در براب استفاده از فیبر کربن ها با درجه بالاتر که فیبر مدول بالا خوانده می شود بسیار مفید بود. وی همچنین کارهای نامعمولی از قبیل حمایت دوچرخه ها برای تیم خودش را انجام می داد بطوریکه معمولا سوراندها مجبور به راندن هر آنچه که اسپانسیر یا حامی برایشان فراهم کرد بودند. البته تبلیغات حامی که این جمله بود حقیقتاً واقعیت داشت:

“so and so selected our product”

تکنولوژی هر چه بالاتر :

فیبر مدول بالا به سادگی همان فیبر کربنی است که بیشتر تصفیه شده. واژه مدول همان مدول یانگ یا معیاری برای سفتی (stiffness) است. هر چقدر عدد آن بالاتر، الیاف قوی‌تر. پروسه ساخت فیبر مدول بالا شامل برهنه سازی لایه بیرونی الیاف به صورت تکی و باقی گذرادن هسته مستحکم تر. شرکتهای نادری در حال استفاده از مقداری محدودی از الیاف مدول بالا می باشند. گران بوده و مصرف آن ناچیز. بیشتر فریم های پیشرفته دوچرخه که در این مقاله نام برده شدند از کربن مدول بالا که با الیاف بور (Boron) آمیخته شده ساخته شده‌اند.

الیاف بور جالب توجه است چون سفتی فوق العاده ای در فشار از خود نشان می دهد. که اگر با کربن فوق سفت در کشش ترکیب شود یک اثر هم افزا بدست خواهد آمد که سفتی کلی و نهایی لوله بیشتر از مقدار پیش بینی شده توسط خواص الیاف به صورت انفرادی می‌باشد. فیبر بور فوق چقرمه همچنین از الیاف کربن مدول بالا که شکنندگی و تردی بیشتری دارد محافظت می کند. این خواص پیشرفته کم کم راه خود را به چرخ دنده فرود جت های جنگنده همانند فریم های مدرن دوچرخه به خوبی پیدا کرد.

ساخت فریم یا کربن :

یک مسری که دوچرخه های فیبر کربنی پیموده اند تقلیدی است از گونه های لوله فلزی سنتی. اینها ضرورتاً شبیه دوچرخه های آلومینیومی مقید شده بوده فقط لوله های فیبر کربنی جانشین یک جزء یا تمام لوله های آلومینیومی شده اند. ایده‌ی اتصال لوله ها با ساختاری 3 گوش نوعی آشنا از این گونه هاست که برای شروع یک طراح، انتخابی منطقی است که تعداد مجهولات را کاهش می دهد چون اجازه می دهد فریم فیبر کربن بعداز یک طراحی موفق، قالب ریزی شود. همچنین امکان تولید اندازه های مختلف و زوایای گوناگون را به سادگی با میله های جدید (lug) برای اتصال به لوله های فیبر کربنی فراهم می کند. رانندگان سنتی این خط مشی به خوبی هستند. مادامی که به اجبار با بیگانگی فیبر کربن سر و کار داشتند از ایشان برای قبول ایده جدید به طور کامل درخواست نشد. با این وجود گنجاندن صلبیت و راحتی راندن در فریم های فلزی نوری مشکل همیشه نتیجه ای توافقی داشت.

فریم نوری شکل (Diamond) نوعی ساختار 3 گوش است که استحکام عمودی در بر دارد. این در حالی است که تلاش ها برای استحکام دهی جانبی می باشد. در هر صورتی که فیبر کربن استفاده شود این خواص در خلال طراحی خوب قابل شناخت است چون این خواص جزء ذات ماده فیبر کرن است. سؤال اینست که تا چه درجه ای این خواص شناخته شده اند.

رویکردهای مختلف دیگری که کمتر سنتی هستند برای ساخت فریم از فیبر کربن وجود دارد.

فوم هسته (Foam – cary) و فریم قالب بادکنکی (bladder – Molded frame) بعضا به ساختارهای قالب ریزی شده “‌یک تکه ” مشهورند. یک تکه یعنی فریم به صورت یک واحد کامل تکی قالب ریزی شود. بعضی هم اگر به صورت چند تکه قالب ریزی شوند به هم چسبانده می شوند و ظاهری یک تکه خواهند داشت. این فرآیندها می تواند پیچیده باشد اما عموماً به مهندسین آزادی می دهد که میتوانند فیبر کربن را هر جا که بخواهند قرار دهند. درزهای پهناور که نتیجه لب به لب شدن مواد مورد نیاز توسط فرایند قالب ریزی است میتوانند بعضا مناطقی ضعیف تر را در فریم به وجود آورند. توجه فوق العاده قوی باید صرف طراحی و ساخت این فریم ها شود تا اطمینان از کنترل کیفیت شایسته حاصل شود.

روش دیگری است وجود دارد که استفاده از فرآیند پرفشار تورق یا لایه لایه شدن (Lamination) نام دارد. این جا یک فریم کم میله (lug-less) ساخته شده که اعضای بنیادین شکل دهنده فریم لوله های فیبر کربن هستند که توسط اپوکسی بارور شده با فیبر کربن به هم متصل (Melding) شده اند. مرغک یا پشبند (Gussets) به صورت کامل به طور همزمان با اتصال لوله ها فرم دهی می شود. همراه با افزایش آزادی، حذف وابستگی به میله (Lug) ، ضعف ذاتی دیده شده در لوله و اتصالات میله دیگر طرح ها نیز حذف گردید. در عوض میزان سازی مشخصه های رانندگی فریم انجام گردیده و این به خاطر استفاده از ماده مشابه در لوله ها در قسمتهای بحرانی لوله است. روانی فیبرها بین لوله ها مداوم است که پراکنش یا واپاچش تنش گردان در فریم را حاصل می شود که نتیجتاً حذف مجازی پدیده های خستگی را در بر دارد.


بررسی سیستم های نانوالکترومکانیک (NEMS)

سیستم های نانوالکترومکانیک (NEMS) در جوامع علمی و تکنیکی مورد توجه زیادی بوده اند این دسته از سیستم ها که بسیار شبیه به سیستم های میکروالکترومکانیک هستند در انواع حالات تشدید شده خود با ابعادی در سابمیکرون عمیق عمل می کنند سیستم در این محدوده، دارای فرکانس های رزونانس بسیار، توده های فعال تحلیل یافته و ثبات نیروی پایداری باشند؛ ضریب کیفیت تشدید ای
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 1123 کیلو بایت
تعداد صفحات فایل 106
بررسی سیستم های نانوالکترومکانیک (NEMS)

فروشنده فایل

کد کاربری 8044

سیستم های نانوالکترومکانیک (NEMS)

سیستم های نانوالکترومکانیک (NEMS) در جوامع علمی و تکنیکی مورد توجه زیادی بوده اند. این دسته از سیستم ها که بسیار شبیه به سیستم های میکروالکترومکانیک هستند در انواع حالات تشدید شده خود با ابعادی در سابمیکرون عمیق عمل می کنند. سیستم در این محدوده، دارای فرکانس های رزونانس بسیار، توده های فعال تحلیل یافته و ثبات نیروی پایداری باشند؛ ضریب کیفیت تشدید این سیستم در رنج Q  lo3-105 بسیار بالاتر از دسته دیگر مدارهای تشدیدی الکتریکی می باشند. این سیستم در NEMS برای دسته بسیاری از کاربردهای تکنولوژی مانند سنسور فراسریع، دستگاه راه اندازی، و اجزای پردازش سیگنال مهیا می سازد.

به طور آزمایشی از NEMS انتظار می رود که امکان تحقیق بر فرآیندهای مکانیکی متعادل فونون و واکنش کوانتوم سیستم های مکانیکی مزوسکوپیک را فراهم آورد. با وجود این، هنوز چالش های ریشه ای و تکنولوژیکی برای بهینه سازی NEMS وجود دارد. در این بررسی ما باید مروری بر چشم اندازها و چالش ها در این زمینه یک معرفی متعادل از NEMS را ارائه داده و کاربردهای جالب و آشکارسازی الکترومکانیک را به تصویر می کشیم.

سیستم های نانو الکترومکانیکی (NEMS)، تشدید گرهای مکانیکی با مقیاس نانو – به – میکرو متر می باشند که به ابزار الکترونیکی دارای ابعاد مشابه وصل می شوند. NEMS نوید میکروسکوپ نیروی فراحساس سریع و عمیق شدن فهم ما از چگونگی پیدایش دینامیک کلاسیک با نزدیک شدن به دینامیک کوانتوم می باشد. این پژوهش با یک بررسی از NEMS شروع شده و پس از جنبه های خاص دینامیک کلاسیک آنها را توصیف می کند. مخصوصاً، نشان می دهیم که برای اتصال ضعیف، عمل ابزار الکترونیکی روی تشدیدگرمکانیکی می تواند به طور مؤثر، یک حمام حرارتی باشد در حالیکه ابزار، یک محرک خارج از تعادل سیستم باشد.

1- مقدمه:

محققان با استفاده از مواد و فرآیندهای میکروالکترونیک مدت هاست که کنترل پرتوها، چرخ دنده ها و پوسته های ماشین های میکروسکوپی را انجام داده اند که این عناصر مکانیکی و مدارهای میکروالکترونیکی که آن ها را کنترل می کنند را به طور کل سیستم های میکروالکترومکانیک یا MEMS خوانده اند. در تکنولوژی امروزی MEMS برای انجام اموری در تکنولوژی مدرن مانند باز و بسته کردن دریچه ها، ( سوپاپ ها) چرخاندن آینه ها و تنظیم جریان الکتریسیته و یا جریان نور بکار گرفته می شود. امروزه کمپانی های متعددی از غول های نیمه هادی گرفته تا راه اندازی های کوچک می خواهند ابزار MEMS را برای طیف گسترده ای از مشتریان تولید کنند. با تکنولوژی میکروالکترونیک که هم اکنون تا حد ریز میکرون پیش رفته است زمان آن رسیده که کشفیات متمرکز NEMS را آغاز کنیم.

شکل 1 خانوادة NEMS نیمه رسانا را نشان داده و مراحل تولید ساخت کلی آن را مطرح می کند. این فرآیند برای طراحی آزادانه ساختارهای نیمه رسانای نانومتر به عنوان نانوماشین سطحی می باشدکه نقطة مخالف میکروماشین بالک MEMS می باشد این تکنیک ها برای سیلکون بر ساختارهای عایق، گالیوم آرسناید روی سیستم های آلومینیوم گالیوم، کاربید سیلکون برسیلیکون، نیترید آلومینوم بر سیلیکون، لایه های الماس نانو بلوری و لایه های نیترید سیلکون نامنظم بکار گرفته می شود. اکثر این مواد با درجه خلوص زیاد وجود دارد که با کنترل دقیق ضخامت لایه ای رشد کرده اند.

این قسمت دوم (کیفیت کنترل لایه ای) کنترل ابعادی در بعد عمودی در سطح تک لایه ای را کنترل می کند. این مقوله کاملا منطبق با دقت ابعادی جانبی لیتوگرافی پرتوالکترونی است که به مقیاس اتمی نزدیک می شود.

NEMS دارای ویژگی های چشمگیری می باشد. آن ها دسترسی به فضای پارامتری را که غیر پیش بینی است را فراهم می کنند؛ فرکانس های مقاومت تشدیدی در میکرویو، ضریب کیفیت مکانیکی در دهها هزار، توده های فعال در femtogram، ظرفیت گرمایی پایین تر از یوکتوکالری و ...

این ویژگی ها تصورات و سیل افکار برای تجربیات و آزمایشات هیجان انگیز را بوجود می آورد و در عین حال تعداد زیادی سؤالات غیرقابل پیش بینی و نگرهایی های بیشماری را نیز بدنبال دارد از جمله این سؤالات: چگونه مبدل ها در مقیاس نانو مشخص می شوند؟ چگونه ویژگی های سطحی کنترل می گردد؟ ویژگی های پارامتر NEMS با هر اندازه و مقیاسی گسترده می باشند. کسانی که می خواهند نسل بعدی NEMS را توسعه دهند باید به سمت آخرین کشفیات فیزیک و علوم مهندسی در جهات مختلف سوق بیابند. این بازنگری در چهار قسمت اصلی ذکر شده است. در دو بخش بعدی ما سعی می کنیم یک معرفی متعادل از NEMS را ارائه دهیم. ما نه تنها ویژگی های جالب و مورد توجه NEMS را مورد بحث و بررسی قرار می دهیم بلکه یک مرور کلی بر چالش های اساسی و تکنولوژیکی را ارائه خواهیم داد.

همچنان که به بخش های بعدی نزدیک می شویم، معلوم می شود که کدام یک از این چالش ها از طریق مهندسی سیستماتیک قابل بحث و بررسی است. در بخش چهارم این تحقیق، یکی از کاربردهای ضروری NEMS را که آشکارسازی نانوالکترومکانیک فراحسی می باشد تحت مطالعه قرار می دهیم. در بخش پنجم پروژه ها را ارائه خواهیم داد.

یک سیستم نانو الکترومکانیک (NEMS) از یک تشدیدگر مکانیکی با درجه بندی نانومتر –به- میکرومتر تشکیل می شود که به یک ابزار الکترونیک دارای ابعاد قابل قیاس مزدوج می شود ، تشدیدگر مکانیکی می تواند یک شکل هندسی ساده داشته باشد مثل یک طرّه یا یک پل و از موادی مثل سیلیکون با استفاده از تکنیک های لیتوگرافی مشابه به نمونه های به کار رفته برای ساختن مدارهای ترکیبی ساخته می شوند. به خاطر اندازه میکروشان، تشدیدگرهای مکانیکی می توانند با فرکانس هایی در محدوده چند مگاهرتز تا حدود یک گیگا هرتز نوسان داشته باشند. ما به طور نرمال، به ایده نوسان سیستم های مکانیکی در چنین فرکانس های رادیویی – به- میکروویو، عادت نمی کنیم.

اتصال به ابزار الکترونیک به شیوه الکترو استاتیکی بومی با بکار گیری یک ولتا‍ژ به یک لایه فلزی گذاشته شده روی سطح تشدیدگر مکانیکی انجام می شود. یک نمونه از یک ابزار الکترونیک تزویجی، یک ترانزیستورتک الکترونی (SET) است که در شکل 1 نشان داده شده است. کوانتوم الکترون ها، هر کدام در یک زمان از عرض ترانزیستور از الکترود درین به الکترود سورس که توسط یک ولتاژ درین- سورس Vds تحریک می شود تشکیل کانال می دهند.

بزرگی کانال دردرین به ولتاژ اعمال شده به الکترود گیت سوم (ولتاژ گیت ) بستگی دارد. چون تشدیدگر مکانیکی بخشی از الکترود گیت را تشکیل می دهد، حرکت تشدیدگر ولتاژ گیت را تغییر می دهد و از این رو جریان کانال درین سورس بعد از تقویت آشکار می گردد؟

با فرکانس های بالا و جرم های اینرسی کوچک تشدیدگرهای نانومکانیکی همراه با قابلیت های شناسایی جابجایی مکانیکی فراحساس ابزارهای الکترونیک مکانیکی،به نظر می رسد NEMS گرایش زیادی به مترولوژی نشان می دهد.

یک زمینه کاربرد ممکن، میکروسکوپ نیرو است که در آن نوک پایه روی یک سطح را جاروب می کند و جابجایی های پایه با حرکت نوک پایه روی سطح اندازه گیری می شوند و یک نقشه توپوگرافی نیرو را ایجاد می کنند. میکروسکوپ نیروی تشدید مغناطیسی (MRFM) مزیت خاصی دارد که یک نوک پایه فرومغناطیسی را بکار برده و نقشه برداری از الکترون جفت نشده و چگالی های چرخش هسته ای در سطح و زیر سطح انجام می شود. اخیراًٌ ، حساسیت های آشکار سازی چرخش تک الکترون بدست آمده است [12و11]، کاربردهای بالقوه در تعیین خصوصیات در سطح تک مولکولی یا اتمی، زیاد هستند و با کاربرد ابزارهای MRFM و NEMS طراحی شده مناسب کوچکتر، فرکانس های مکانیکی بالاتر ممکن است منجر به زمان های بازخوانی سریعتر در میزان حساسیت های معادل یا بهتر شوند.

کاربرد دیگر، حس کننده جرم است که در آن ذرات کوچک جرم مستقل به تشدیدگر نانومکانیکی از تغییر فرکانس ارتعاشی، تعیین می شوند. اخیراً، میزان حساسیت شناسایی اتوگرام ( 10=اتو ) به دست آمده است[14و13].

با کاربرد فرکانس طراحی شده مناسب بالاتر NEMS ، شناسایی مولکولهای انفرادی در حساسیت های تک دالتونی ممکن است.( یک دالتون برابراست با و 12/1 ماده در یک c12 اتم)

NEMS در جای خود به عنوان سیستم های دینامیک مهم جالب است. به خاطر جرم اینرسی تشدیدگر نانو مکانیکی و اتصال الکترو استاتیکی قوی به ابزار الکترونیک ترکیبی دقیق حاصل شده، الکترون های انفرادی که در ابزار الکترونیک حرکت می کنند می توانند نیروهای جابجایی بزرگی به تشدیدگر مکانیکی وارد کنند.

شکل a .1) تصویری که عملیات آشکار ساز جابجایی SET را نشان می دهد. سطوح انرژی باردار مشخص هزینه انرژی ناشی از تغییردرانرژی میدان الکتریکی ذخیره شده به صورت یک یا چند الکترون را نشان می دهد که برسطح داخلی تونل سازی می شود و گسستگی سطوح اثر کوانتومی نیست بلکه هزینه افزایش انرژی در قراردادن فزاینده تعداد الکترون های روی سطح در همان زمان استb) ریزنگار میکروسکوپ الکترون پویشی (SEM) رنگی کاذب دو پرتو کنار هممعلق و SEM را نشان می دهد. ماده اصلی و پرتو از GaAs (مناطق آبی) می باشد و الکترودهای گیت پرتو و SET لایه های نازک آلومینیوم (منطقه زرد) با اکسید آلومینیم است که مانع های تونل را تشکیل می دهد. پرتو 0/25 µm دور از سطح الکترود قرار دارد . فرکانس موجی بنیادی سنجیده شده برای حرکت در سطحMHZ 116 است.

در عوض، حرکت تشدیدگر روی جریان الکترون و ... تأثیر می گذارد. در دماهای بالا، ابزار الکترونیکی خاص می توانند به یک شیوه منطقی کوانتومی رفتار کنند که دریک مکان کوانتومی دارای موقعیت های متفاوت، هنگامی که الکترونها از طریق قطعه انتقال می یابند، موجود هستند. تأثیر متقابل چنین ابزاری، مرکز جرم تشدیدگر مکانیکی ممکن است به یک حالت کوانتوم [6] کشیده شود، مثل یک موقعیت حالات مکان مجزا. ذات کوانتومی سیستم الکترومکانیکی مزدوج درموارد خاص جریان اندازه گیری شده آشکار می شود. تشدیدگرهای نانومکانیکی از حدود ده بیلیون اتم تشکیل می شوند، طوری که از طریق اکثر استانداردها، چنین تغییرات کوانتومی، میکروسکوپی فرض می شوند. این مهم است که درک کنیم که در اینجا ما به تأثیرات کوانتوم در ابزار "واقعی کدر" اشاره کنیم که دارای درجات آزادی مکانیکی و الکترونیکی بوده به شدت با محیط اطراف که از فوتون و فونون تشکیل شده تعامل داشته و معایب تشدیدگر مکانیکی و ابزار الکترونیکی را تغییر می دهند. بررسی آزمایشی و نظریه ای چنین سیستم هایی منجر به یک فهم عمیق تر از چگونگی تبدیل دینامیک کلاسیک با تقریب به دینامیک کوانتوم می شود. NEMS دنیای کوانتوم میکروسکوپی و کلاسیک ماکروسکوپی ایجاد می کنند.

در اولین آزمایشات به بازبینی دینامیک NEMS، می پردازیم که نتیجه می گیریم اجزاء تشدیدگر مکانیکی همانطور که انتظار می رفت، به شیوه کلاسیک عمل می کنند، آزمایشات به اندازه ی کافی خالص نیستند تا تأثیرات دخالت کوانتوم را که توسط محیط تشدیدگر از بین می روند را قابل مشاهده کنند. به رغم این، دینامیک نیمه کلاسیک NEMS مهم بوده و ارزش بررسی دارد. یک بعد از بررسی این است که ویژگی های مشترک دینامیک کلاسیک ابزار متفاوت NEMS را شناسایی کنیم تا به میزان ارتباط و وابستگی رشته ای دست یابیم. تحت شرایط خاص تزویج ضعیف و همچنین جدایی وسیع مقیاس زمانی دینامیکی الکترونیک و مکانیکی، ابزار الکترونیک به طور مؤثر به صورت یک حمام حرارتی عمل می کند. تشدیدگر مکانیکی حرکت براونی حرارتی را که توسط یک ثابت میرایی و دمای مؤثر شناسایی می شود و توسط پارامترهای الکترونیک وسیله مشخص می شود را تحمل می کند [23 و22]. این واقعیت که ابزار الکترونیک می تواند به طور مؤثر توسط یک حمام حرارتی جایگزین شود، در اولین نگاه با دانستن اینکه جریان الکترون تحریک شده توسط ولتاژ در ابزار، یک حالت الکترون دور از تعادل است، حیرت انگیز می باشد. کاربرد مدل های اصول شناخته شده پایداری در ساختار مدل های تئوریک سیستم های غیرتعادلی نه چندان شناخته شده برای یافتن کاربرد وسیع به دوران اولیه مکانیک آماری بر می گردد. خلاصه این فصل به این شکل است: بخش2 نمونه هایی از ابزار گوناگون معرف NEM را نشان می دهد که در حال بررسی هستند. بخش 3، دینامیک کلاسیک سیستم تشدیدگر SET- مکانیکی را با تمرکز روی توصیف موازنه مؤثر در رژیم اتصال ضعیف بررسی می کند. بخش 4، دینامیک موازنه مؤثر برخی دیگر از NEMS معرفی می شده دربخش2 را توصیف می کند. بخش 5 نتیجه گیری می باشد.

2– ویژگی های NEMS:

1-2 NEMS به عنوان ابزارات الکترومکانیک چند قطبی.

تصویر شماره 2 وسیله الکترومکانیکی چندقطبی کلی را نشان می دهد که در آن مبدل های الکترومکانیکی محرک مکانیک ورودی را برای سیستم فراهم کرده و پاسخ مکانیکی اش را مورد مطالعه قرار می دهند. در قطب های کنترل اضافی، سیگنال های الکتریکی، به ظاهر استاتیک و متغیر زمانی می تواند بکار گرفته شود و نتیجتا با کنترل مبدل ها به نیروهایی برای برهم زدن ویژگی های عنصر مکانیکی تبدیل می شود.

ابزارات NEMS تصاویر کلی توصیف شده در بالا را ارائه می دهد. ما بعدا می توانیم NEMS های موجود را به دو دسته تشدیدشده و ظاهرا استاتیک تقسیم کنیم.

شکل 3- نمودار معرفی وسایل الکترومکانیکی چند ترمینالی

تصویر 2 a) تقطیق ریز نگار الکترون از Sic NEMS . این اولین خانواده از ریز میکرون دو پرتو کنارهم که فرکانس های تشدیدی موجی بنیادین آن از دو تا 134 مگاهرتز نمایش داده می شود. آنها با الگوها در تکنولوژی کالری از C-Sic 3 بودند که لایه های epi به حالت دانشگاه غربی اختصاص داده شد. b) سطح نانو ماشین NEMS ساخت آن به غیر از ساختمان نیمه هادی شروع شد. از چنین واحد نشان داده شده در I) با ساختمانی (بلند) از دست دادن (وسط) لایه های روی سر یک زیر لایه (پائین). II) ابتدا ماسک از طریق پرتو لیتوگرافی الکترون تعیین می شود. III) سپس به طور نمونه در لایه از دست داده با استفاده از سیاه کردن یک ناهمسانگر مانند سیاه کردن پلاسما IV) سرانجام لایه از دست داده شده تحت ساختمان با استفاده از سیاه انتخابی رفع می شود. ساختمان می تواند بعد یا در مدت فرایند وابسته به نیازمندیهای سنجش مخصوص فلز کاری شود.

در این بازنگری توجه ما در ابتدا بر ابزارات تشدید به عنوان ابتدایی ترین کاربردهای NEMS می باشد مبدل های ورودی در NEMS های تشدیدی، انرژی الکتریکی را با تحریک کردن حالت های تشدیدی عنصر مکانیکی به انرژی مکانیکی تبدیل می کنند. پاسخ مکانیکی که جابه جایی عنصر نامیده می شود به سینگنال های الکتریکی بازگردانده می شود. در این حالت تشدید عملیات اختلالات خارجی می تواند به عنوان سینگنال های کنترلی مورد نظر قرار گیرد چرا که آن ها ویژگی های ارتعاشی چون شدت فرکانس π ωo/2 یا Q عنصر ارتعاشی را توصیف می کنند. ماباید مکانیسم های تبدیل های الکترومکانیکی در NEMS را مورد بحث و بررسی قرار داده وبرای اندازه گیری اختلال خارجی که در بخش چهار مورد مطالعه قرار می گیرد مثال بیاوریم.

2-2 فرکانس

در تصویر شماره 4، ما فرکانس های بدست آمده به طور تجربی را برای حالت های متغیر بنیادین پرتوهای نازک طراحی کرده و برای ابعاد مختلف دامنه را از MEMS به عمق NEMS ادامه می دهیم. تخمین ها مکانیکی زنجیره ای برشمرده می شود، در واقع این بدین مفهوم است که عبارت شدت تغییر فرکانس های نازک پرتوهای NEMS را که به طور مضاعف گیر افتاده اند را تعیین می کند. در اینجا، w×t×l ابعاد موجود هستند، E ضریب یانگ می باشد و P برابر با چگالی حجم پرتو است (تصویر4). قابل توجه است که برای ساختارهای با ابعاد مشابه، si فرکانس های ضریب 2 را بوجود آورده و sic چیزی است که 3 برابر میزان بدست آمده از ابزارات GaAs می باشد. این افزایش ولوسیته فاز افزایش یافته را در مواد سفت تر نشان می دهد.

البته ، حتی اگر در سایز کوچکتر از این نیز قرار داشته باشد هنوز ملموس است به خصوص برای نانووایر و نانوتیوپ NEMS این مسئله دقیقا صدق می کند. ممکن است بپرسید که در چه مقیاسی مکانیک زنجیره وار شکسته شده و تصحیح رفتار اتمی صورت می گیرد؟ شبیه سازی دینامیک ملکولی برای ساختارهای ایده آل و آزمایش های اولیه نشان می دهد که این فقط برای ساختارهای بر روی نظم ده شبکه لتیس در برش عرضی آشکار می گردد. بنابراین برای بیشتر کارهای اخیر در NEMS، تخمین های زنجیره ای موجود کافی به نظر می رسد.

در اکثر NEMS ها به خصوص در ساختارهای دو یا چند لایه ای، فشارهای داخلی باید هنگامی که فرکانس های شدت تخمین زده می شود در نظر گرفته شود. تصویر 5 تلاش اولیه ما را برای مشخص کردن چنین تأثیراتی در NEMS های نیمه رسانا با لایه های رویی فلزی نشان می دهد. در این اندازه گیری ها نیروهای ایستایی کوچک برای شدت های پرتو نانومکانیکی گرفته شده بکار بسته می شود و فرکانس های تشدیدشان تحت عنوان تابع نیروی اعمالی بکار گرفته شده ارزیابی می شود. تغییرات فرکانس تحریک شده به خصوص هدایت ظاهری آن که با تغییر همراه شده است توسط وجود فشار داخلی مقاوم ثابت می گردد.

شکل 4: طرح فرکانس در مقابل هندسه موثر برای دودسته پرتو کنارهم که از تک کریستالSi , Sic GaAs , ساخته می شودی دودسته پرتو کنارهم با طول L عرض w و ضخامت t نشان می دهد. فرکانس تشدیدی انعطافی خارج از سطح بنیادی این ساختار با این عبارت معین شده است در طرح مقادیر t/L2 برای رفع اثر سختی اضافی و بارگیری جرمی به خاطر فلز سازی الکترود غیرعادی می شود.

3-2 ضریب کیفیت (Q)

ضریب Q که در نیمه رساناهای NEMS بدست آمده اند در رنج 105- 103 وجود دارند. این از لحاظ نوسانگر الکتریکی از بقیه دسته های موجود فراتر می رود. این مقدارناچیز اتلاف انرژی داخلی، سطوح قدرت اجرایی پایین و حساسیت بالا را چنانکه در بخش بعد به طور دقیق توضیح خواهیم داد به NEMS منتقل خواهد کرد.

برای ابزار پردازشگر سیگنال، Q بالا به طور مستقیم به کاهش ضمیمه زیر بر می گردد. باید توجه باشیم که Q بزرگی کاهش پهنای باند را نتیجه می دهد در حالی که این به دو دلیل برای اجرا از میان بخش نمی باشد. اولین دلیل کنترل بازخورد است که می تواند بدون معرفی و سروصدای اضافی بکار بسته شود و ممکن است برای افزایش پهنای باند تا حد دلخواه مناسب باشد. دوم اینکه، برای عملکرد مبدل در GHZ 1 ~ حتی در مورد Q با میزان بالا 10 ~ ، عرض های معادل KHZ 10 ~ نیز می تواند بدست آید؛ این برای کاربردهای مختلف باندهای باریک نیز کافی می باشد.

4-2 مشخصه عملکرد توان عملیاتی

درک حداقل قدرت اجرای P min برای وسیله NEMS تشدیدی می تواند توسط درک اینکه مبدل به طور ساده یک وسیله ذخیره انرژی از دست رفته است بدست آید. انرژی که به وسیله منتقل میگردد و در فواصل زمانی Q/ω0 ~ T اتلاف می شود فرمان شروع و پایان مبدل خوانده می شود. حداقل توان عملیاتی برای سیستم به عنوان انرژی که سیستم را در دانه های قابل مقایسه با آن دسته از نوسانات گرمایی،تحریک می کندبا تعیین KBT نوسانات گرمایی حداقل قدرت ورودی می تواند توسط فرمول زیر تخمین زده شود.

(1) P min ~kBTΩo/Q

برای وسیله NEMS که امروزه از طریق لیتوگرافی پرتو در دسترس می باشد، ویژگی سطح قدرت پایین در ردیف(1017w)10aw قرار دارد. حتی اگر ما این مقدار را در ضریب 1000000 ضرب کنیم وبعد از آن عملکرد یک میلیون از چنین ابزاری برای درک بعضی از سیستم های محاسبه یا پردازشگر مکانیکی بر اساس NEMS که در آینده بکار می رود را مشاهده کنیم، سطوح قدرت سیستم کلی هنوز بر اساس µw 1 قرار دارد. این 6 مرتبه مقدار پیچیدگی کمتری از اتلاف قدرت در سیستم های جریان مشابه مبنی بر ابزارات دیجیتالی است که در محدوده الکترونیکی به تنهایی کار می کنند.

5-2 پاسخ گویی ( واکنش پذیری)

این امکان وجود دارد که تکنولوژی MEMS با مقیاس کوچک را برای بدست آوردن فرکانس های بالا به کار بگیریم . این شیوه ، با این وجود دارای مضرات جدی و قابل ملاحظه ای می باشد که درک محدوده کامل توانایی هایی که توسط تکنولوژی NEMS ارائه شده است را محدود می کند. برای تشریح این مقوله ما باید مجددا بحث مان را بر روی پرتوهای گرفته شده به طور مضاعفL/t,L/W معطوف کنیم. دستیابی به فرکانس بالا با ساختارهای با مقیاس میکرون فقط با نسبت های کوچک واحد ترتیبی اتفاق می افتد. چنین هندسه هایی مقدار ثابت نیروی بالایی keff را به وجود می آورند.

تصویر 5) اندازه گیری فشار و کشش داخلی در مبدل های پرتو نانوالکترونیک در اینجا پرتو در معرض نیروی Fdcو همچنین نیروی تحریک کوچک در اطراف فرکانس شدت قرار دارد. تأثیر شبکه تغییر ω δ در ωo می باشد. Fdcتوسط عبور جریان dc در طول پرتو در رشته مغناطیسی ایستا تولید می شود. تغییر فرکانس داده های Sω/ωo در مقابل Fdcدر طول واحد پرتو IdcB برای سه مقاومت مغناطیسی مختلف B به وجود می آید. انحنای واضحی که در پایین ترین قسمت قرار دارد و دارای ارزش می باشد می تواند به تأثیر گرمایی نسبت داده شود چرا که برای بدست آوردن Fdc مشابه، Jdcبزرگتر در B پایین تر مورد نیاز است. آنالیز ساده با استفاده از تئوری الاستیکی نشان می دهد که ω δ مثبت است و در اطراف Fc═0 در مبدل پرتو بدون فشار به طور متقارن وجود دارد. یک مبدل با فشار داخلی، با وجود این، یک تغییر را در ω/ωo δ به وجود می آورد که با داده های ارائه شده ثابت می گردد.

Keff بزرگ می تواند به ترتیب بر موارد زیر تأثیر بگذارد : الف) دامنه دینامیک قابل دسترسی ب) توانایی هماهنگی ابزار با استفاده از سیگنال های کنترل پ) کسب حداکثر Q (از طریق به حداقل رساندن اشعه های صوتی به پشتیبانی یعنی محار کردن تلفات) و ت) سطوح تحریک شده مورد نیاز برای القای پاسخ های غیرخطی. تمام این ویژگی ها در بعد و متغیر ساختارهای نسبی بهینه سازی می شود یعنی ساختارهای با هندسه هایی که اخیرا در MEMS مورد استفاده قرار می گیرد اما در تمام جهات ابعاد مقیاس نانوNEMS را کاهش می دهد: Keff محاسبه شده و سایر پارامترهای حائز اهمیت برای NEMS های مختلف در طول ابعاد شان در جدول شماره 1 آورده شده است.

جدول 1: ویژگی های مهم برای خانواده ای از پرتوهای δi باگیر کردن مضاعف با p=10000 در T=300K مقدار ثابت نیروی موثر Keff= 23 Et3 w/L3 برای بارگیری نقطه ای در مرکز پرتو تعیین می شود. دامنه غیر خطی C> با استفاده از معیار توصیف شده در متن مشخص شده است. دامنه دینامیکی خطی محدود ترمومکانیکی برای عرض نواراصلی پرتو محاسبه­می شود­جائیکه جرم موثر برای حالت اساسی است که Mtot کل جرم پرتو است.


بررسی انکدر دوار که انکدور محور (‌Shaft encoder)

انکدر دوار که انکدور محور (‌Shaft encoder) نیز نامیده می شود عبارتست از یک دست الکترومکانیکی که برای تبدیل موقعیت زاویه‌ای (θ) یک محور انتقال به یک کمیت آنالوگ و یا یک کد دیجیتال استفاده می شود این وسیله که در واقع نوعی ترانزیستور( مبدل ) به شمار می آید در جاهایی چون رباتیک ،‌در بالای لنزهای عکاسی ، در دستگاه های ورودی کامپیوتر ( از قبیل موس های
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 22 کیلو بایت
تعداد صفحات فایل 21
بررسی انکدر دوار که انکدور محور (‌Shaft encoder)

فروشنده فایل

کد کاربری 8044

انکدر دوار :

انکدر دوار که انکدور محور (‌Shaft encoder) نیز نامیده می شود عبارتست از یک دست الکترومکانیکی که برای تبدیل موقعیت زاویه‌ای (θ) یک محور انتقال به یک کمیت آنالوگ و یا یک کد دیجیتال استفاده می شود این وسیله که در واقع نوعی ترانزیستور( مبدل ) به شمار می آید : در جاهایی چون رباتیک ،‌در بالای لنزهای عکاسی ، در دستگاه های ورودی کامپیوتر ( از قبیل موس های اپتومکانیکی و...) و در ایستگاه های رادار دوار استفاده می گردند .

این دستگاه ها دو نوع عمده دارند : نوع مطلق (absolute type) و نوع افزایشی (Ineremental)

انکدر دوار مطلق :

ساختمان انکدر

نوع دیجیتال آن به ازای هر زاویة‌مشخص از محور (θ) یک کد دیجیتال منحصر به فرد ایجاد می کند . یک ورق فلزی ( برش یافته با مکانیسمی پیچیده ) به یک دیسک جدا کننده که کاملاً‌با محور درگیر می باشد چسبیده شده است .

یک سری کنتالتهای لغزان بر روی یک هستة ساکن فیکس شده اند . به طوری که هر کنتاکت در مقابل ورقة‌فلزی در فواصل مختلف از محور جاروب می شود. هنگامی که دیسک به همراه محور می چرخد تعدادی از کنتاکت ها با ورق فلزی در تماس قرار می گیرند . درحالی که بقیه در درون gap قرار می گیرند جایی که ورقه دارای شیار (‌بریدگی ) است این ورقة‌ فلزی به یک منبع جریان الکتریکی وهر کنتاکت به یک سنسور الکتریکی مجزا متصل است . ورقه فلزی طوری طراحی شده است که هر موقعیت زاویه‌ای ممکن برای محول تولید یک کد باینری منحصر به فرد می کند که در آن برخی کنتاکت ها به منبع جریان متصل می شوند . و دیگر کنتاکتها در حالت Off باقی می مانند. این کد را می توان توسط قطعات کنترلی از قبیل میکروپروسسور ، برای مشخص کردن زاویة محور ( Shaft) دیگر کرد .

آنکدر آنالوگ مطلق یک کد آنالوگ دوتایی منحصر به فرد تولید می کند که می تواند با استفاده از الگوریتم های خاص به صورت موقعیت زاویه‌ای مطلق محور دیگر شود .

انکدینگ باینری استاندارد :

انکدر دوار برای دستگاه های اندازه گیری زاویه ، 3 بیتی هستند . درونی ترین حلقه معادل کنتاکت 1 در جدول است سکتورهای سیاه On هستند درجه های صفر در سمت راست و افزایش زاویه در جهت پادساعتگرد است . مثالی از کد باینری در یک انکدر بسیار ساده با سه کنتاکت در زیر نشان داده شده است .

Angle

Contact3

Contact2

Contact1

Sectore

در حالت کلی ، اگر n‌، کنتاکت وجود داشته باشد، تعداد موقعیت های مجزای محور برابر 2n خواهد بود در این مثال n‌برابر 3 و لذا 23=8 موقعیت مختلف می توان برای محور در نظر گرفت .

در انکدر ارائه شده در مثال فوق ، کنتاکتها یک شمارش باینری استاندارد به عنوان چرخش های محور تولید می کنند . البته یک مشکل وجود دارد و آن اینکه چنانچه دیسک در بین دو سکتورمجاور قرار گیرد و یا به عبارت دیگر کنتاکتها به طور کامل در یک خط قرار نگیرند‌، امکان تعیین زاویة محور وجود نخواهد داشت . برای روشن شدن این مسئله ، حالتی را در نظر بگیرید که زاویة‌محور از 179.9º به 180.1º تغییر میکند (‌تغییر حالت از سکتور 3 به سکتور 5) در این حالت چه اتفاقی می افتد ؟

در چند لحظه طبق جدول فوق ، طرح کنتاکتها از حالت OFF-ON-ON به حالت ON- OFF- OFF تغییر می یابد . اما در واقع این اتفاق نمی افتد در یک سیستم عملی ، کنتاکتها هرگز کاملاً در یک خط قرار نمی گیرند .

و بنابراین هر کدام در یک لحظه متفاوت سوئیچ می شوند نه به طور همزمان . چنانچه ابتدا کنتاکت 1 سوئیچ شود به دنبال آن کنتاکت 3 و سپس کنتاکت 2 سوئیچ می شود .

برای مثال ترتیب واقعی کدها به صورت زیر خواهد بود :

در حالت ابتدایی

OFF-ON- ON

حالت اول :‌کنتاکت ON1 می شود

ON- ON - ON

حالت دوم : کنتاکت OFF3 می شود

ON – ON – OFF

حالت سوم : کنتاکت OFF2 می شود

ON- OFF- OFF

حال به سکتورهای متناظر با این کدها در جدول دقت کنید . به ترتیب داریم 7.8.4 و سپس 5.

بنابراین با توجه به ترتیب کدهای تولید شده ، به نظر می رسد که محور از سکتور 4 به سکتور 8 پرش کرده است و سپس به عقب برگشته (‌به سکتور 7) ودر نهایت باز هم به عقب بر می گردد ( سکتور 5) و این جایی است که انتظار می رفت محور در آنجا یافت شود . در بسیاری از مواقع ، این رفتار نامطلوب است و می تواند منجر به خرابی سیستم گردد. برای مثال ، چنانچه انکدر در بازوی یک ربات استفاده شود ، کنترلر ممکن است فکر کند که بازو در موقعیت اشتباه قرار گرفته است و در نتیجه با چرخش آن حول و حوش 180º سعی در تصحیح خطای مذکور نماید که این امر ممکن است منجر به آسیب دیدن بازوی ربات گردد.

گری انکدینگ Gary en coding

انکدر دوار برای دستگاه های اندازه گیری زاویه توسط 3 بیت کدگری منعکس شدة باینری مشخص می شوند دورنی ترین حلقه متناظر با کنتاکت 1 در جدول است سکتورهای سیاه on هستند درجه های صفر در سمت راست و افزایش زاویه در جهت پادساعتگرد است.

برای رفع مشکل موجود در انکدر ارائه شدة قبلی از گری انکدینگ استفاده شده است.

این یک سیستک باینری شمارش است که در آن دو کد مجاور تنها در یک مکان اختلاف دارند برای مثال سه کنتاکت ارائه شده قبلی ، نسخة کد شده باکری چنین خواهد بود :

Angle

Contact3

Contact2

Contact1

Sectore

در این مثال انتقال از سکتور 4 به سکتور 5، مانند دیگر انتقالها ، شامل تغییر حالت یک کنتاکت از حالت on‌به off و یا برعکس می باشد این بدان معناست که ترتیب کدهای اشتباه نشان داده شده در مثال قبل در این حالت نمی تواند رخ دهد .

انکدر دوار افزایشی incremental rotary encoder

انکدرهای دوار افزایشی ، به عنوان انکدر های ربعی quadrature encoder نیز شناخته می شوند . این نوع انکدرها (‌که انکدرهای دوار اضافی relative rotary encodery نیز نامیده می شوند. دارای دو خروجی هستند که خروجی های ربعی نام دارند. آنها می توانند به دو صورت مکانیکی یا نوری باشند . در نوع نوری دو track کد شده باگری وجود دارد ، در حالی گرانکدرهای از نوع مکانیکی دارای دو کنتاکت هستند که توسط بادامک های روی محور گردان تحریک می شوند . این نوع انکدرها نیاز به debouance دارند و نوعاً به عنوان پتانسیومترهای دیجیتال روی تجهیزات شامل دستگاه های مصرف کننده استفاده می شوند. امروزه اغلب برای استریوهای جدید خانگی و یا اتومبیل از انکدرهای دوار مکانیکی جهت صوت استفاده می کنند. به خاطر این واقعیت که سوئیچ های مکانیکی به debouncing نیاز دارند‌، انواع مکانیکی آنها تنها به حرکت های دورانی محدود شده اند.

انکدرهای دوار افزایشی به سبب پایین بودن قیمت شان ( فقط به دو سنسور نیاز دارند ) نسبت به سایر انکدرها‌، بسیار بیشتر مورد استفاده قرار می گیرد. این واقعیت که انکدرهای افزایشی تنها از دو سنسور استفاده می کنند، خللی در دقت آنهاایجاد نمی کند. طوری که هم اکنون می توان انکدرهای افزایشی با بیش از 000/10 شمارش در هر دور چرخش در بازار یافت .

این انکدر می تواند دارای سه خروجی دلخواه باشد . خروجی مرجع که به ازای هر چرخش یک بار رخ می دهد و در مواردی کاربرد دارد که نیاز به یک مرجع مطلق باشد ، به طور مثال سیستم های موقعیت سنج .

نوع اپتیکال (‌نوری ) انکدرها در مواردی کاربرد دارند که با RPM های بالاتر (سرعت‌های بالا) مواجه باشیم و یا در مواردی که درجة دقت بسیار بالا مورد نیاز باشد.

انکدرهای افزایشی به منظور دنبال نمودن حرکت به کار می رود . به علاوه آنها می توانند برای تعیین موقعیت وسرعت نیز به کار روند که این سرعت می تواند سرعت خطی و یا چرخشی باشد. توانایی تشخیص جهت این انکدرها امکان اندازه گیری های بسیار دقیق درموارد مختلف را به وجود می آورد .


برسی معرفی انواع کمک فنرها و لرزه گیرها

لرزش‌های پی‌درپی بدنه خودرو سبب خستگی راننده و سرنشینان می‌شود در پی آن کارایی و بازدهی رانندگی و عمر مفید خودرو کاهش یافته و سلامتی انسان به خطر می‌افتد بنابراین مدل‌سازی مود سواری خودرو و به سازی پاسخ لرزشی آن با بهره‌ از میراینده‌های ارتعاشی از دیدگاه‌های مهم در طراحی خودرو بوده، که آسایش سرنشین، افزایش دوام خودرو، ایمنی و افزایش کنترل خودرو را
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 5117 کیلو بایت
تعداد صفحات فایل 78
برسی معرفی انواع کمک فنرها و لرزه گیرها

فروشنده فایل

کد کاربری 8044

فصل اول:

معرفی انواع کمک فنرها

و لرزه گیرها


سیستم تعلیق

لرزش‌های پی‌درپی بدنه خودرو سبب خستگی راننده و سرنشینان می‌شود. در پی آن کارایی و بازدهی رانندگی و عمر مفید خودرو کاهش یافته و سلامتی انسان به خطر می‌افتد. بنابراین مدل‌سازی مود سواری خودرو و به سازی پاسخ لرزشی آن با بهره‌ از میراینده‌های ارتعاشی از دیدگاه‌های مهم در طراحی خودرو بوده، که آسایش سرنشین، افزایش دوام خودرو، ایمنی و افزایش کنترل خودرو را به دنبال دارد.

خاصیت میرایش ارتعاشات و لرزش‌ها و رفع بعضی از اغتشاشات حرکت در خودرو و حفظ بعضی ویژگی‌های مناسب جهت ایمنی،‌ از ویژگی‌های مناسب مکانیکی است که انجام آن با یک وسیله مکانیکی امکان‌پذیر است . مجموعه مشخصی که فراهم‌گر هدف بالا است، سیستم تعلیق نام دارد. این مجموعه قلمرو وسیعی را با خواص و وظایف متفاوت در بر دارد.

نقش سیستم تعلیق در خودرو مهار چرخ در فضا (در سه راستای Z , Y , X) و فراهم کردن حرکات خطی و زاویه‌ای مناسب آن است . نیز چرخ‌ها را به صورت تکیه‌گاهی امن در زیر خودرو نگاه می‌دارد به گونه‌ای که چرخ‌ها توان مهارسازی نیروهای اعمالی به خودرو (گرانش، گریز از مرکز، نیروهای رانشی و ترمزی و ...) را داشته باشند. ویژگی‌های سختی و میرایی تعلیق بایستی چنان برگزیده شوند که پایداری و آسایش خودرو تامین گردد.

برای پی بردن به جایگاه سیستم تعلیق، خودرو را در سه حالت زیر در نظر می‌گیریم :

بی‌تعلیق : بدون سیستم تعلیق، تایر و بدنه معلق می‌باشند. در نتیجه هر ناهمواری در سطح جاده ، به سرنشینان خودرو منتقل خواهد شد.

با تعلیق و بی‌لرزه‌گیر : در این حالت تایر به زمین چسبیده ولی بدنه معلق می‌باشد. در نتیجه بدنه خودرو به طور مداوم به بالا و پایین نوسان می‌کند.

با تعلیق و لرزه‌گیر : در این حالت تایر و بدنه به زمین چسبیده است و لرزه‌گیر، نوسانات فنر را دفع می‌نماید چرخ‌‌ها به راحتی به بالا و پایین حرکت کرده و پایداری، اطمینان و راحتی خودرو را در پی خواهد داشت.

شکل 1 ـ مقایسه خودرو بدون تعلیق، با تعلیق بدون لرزه‌گیر و با تعلیق کامل

زیر بخش‌های عمده سیستم تعلیق شامل تایر،‌ فنر و لرزه‌گیر می‌باشد که وظیفه آنها برقراری تماس بین چرخ و زمین، ایمنی و راحتی سرنشینان می‌باشد. نیز برای کاهش و در صورت امکان حذف سر و صدا و ارتعاشات، موادی چون لاستیک، چرم، اسفنج،‌ فنرهای متفاوت (مارپیچی، شمشی و میله‌های پیچشی) و ضربه‌گیرهای مختلف (اصطکاکی، هیدرولیکی و گازی) به کار می‌رود.

زیربخش‌های سیستم تعلیق

فنر

فنر عنصری انرژی دهنده و گیرنده می‌باشد که بر اثر تغییر شکل کشسان انرژی پتانسیل آن تغییر می‌کند. در یک سیستم مکانیکی سختی نمایانگر ویژگی‌های فنریت آن است.

در تعیین ویژگی‌های فنریت سیستم‌های مکانیکی باید انعطاف‌پذیری قطعات را نیز لحاظ کرد. محاسبه سختی مؤثر یک مجموعه به سادگی و با بهره از قانون برآیند فنرها امکان‌پذیر است. اگر دو عضو به صورت سری قرار گرفته باشند، آنگاه فنر معادل به قرار زیر است :

(1-1)

اگر دو عضو به صورت موازی قرار گرفته باشند، آنگاه فنر معادل به قرار زیر است:

(1-2)

شکل 2 ـ روش‌های مختلف سرهم‌بندی فنر : روش موازی، روش سری و روش پیچشی

ویژگی‌های مکانیکی فنر

فنرها بر پایه رفتار و ویژگی‌های نیرویی به دو دسته خطی و ناخطی تقسیم می‌شوند. در بیشتر فنرها، نیروهای فنر تابعی از تغییر شکل آن به قرار زیر است :

(1-3)

از آنجا که چرخش این میدان صفر است، بنابراین یک میدان نیروی پایستار است. تابع پتانسیل (انرژی پتانسیل) این میدان پایستار به قرار زیر است :

(1-4)

(1-5)

دسته‌بندی فنرها

فنرها گونه‌های مختلفی دارند، که انواع پرکاربرد آن در صنعت به قرار زیر است :

فنر مارپیچ

فنر مارپیچ مفتولی فولادی است که به صورت حلقه‌ای پیچانده شده است (شکل ). فنر مارپیچ برای مقاومت در برابر بارهای کششی، فشاری یا پیچشی ساخته می‌شود. سختی یک فنر مارپیچ به قرار زیر است :

(1-6)

d : قطر مفتول فنر

N : تعداد حلقه‌های فنر

R : شعاع میانگین فنر

G : مدول برشی

شکل 3 ـ ساختار فنر مارپیچ

شکل 4 ـ گونه‌های مختلف انتهای فنر مارپیچ

فنر مارپیچ نرم‌تر از فنر تخت است، یعنی دارای سختی کمتری می‌باشد. این گونه فنرها کاربرد فراوانی در سیستم‌های تعلیق خودرو دارا می‌باشند. فنرهای مارپیچ به کار رفته در سیستم تعلیق بیشتر به صورت عمودی نصب می‌شوند و بنابراین به فضایی مناسب نیاز دارند. اصطکاک در این گونه فنرها ناچیز و تنها در محل تماس فنر با بدنه مطرح است. تنش اصلی ایجاد شده در این گونه فنرها تنش برشی است، اگر چه کمی‌هم در اثر خمش دچار تنش می‌گردند.

فنرهای مارپیچ بهترین خاصیت را برای جذب انرژی ناشی از حرکات ارتعاشی خودرو دارا می‌باشند و از این نظر بهترین کارایی را دارند. فنرهای مارپیچ اجازه انحرافهای بزرگتری را نسبت به فنرهای تخت می‌دهند و بنابراین آسایش و نرمی‌بیشتری را نسبت به فنرهای تخت برای سرنشین خودرو فراهم می‌آورند. امروزه در سیستم تعلیق جلو و پشت سواری‌ها فنر مارپیچ بکار می‌رود و دیگر از فنرهای تخت استفاده نمی‌شود.

شکل 5 ـ گونه‌های مختلف اتصال و قرارگیری فنر مارپیچ

فنرهای پیچشی

در فنرهای پیچشی تغییر شکل زاویه‌ای سبب ایجاد گشتاور پیچشی است. رابطه نیرو و جابجایی در فنرهای پیچشی به قرار زیر است :

(1-7)

میله پیچشی

میله پیچشی محوری فولادی است که در برابر گشتاور پیچشی قرار گرفته و تغییر شکل آن زاویه‌ای است.

شکل 6 ـ نمای هندسی فنر پیچشی

میله پیچشی بیشتر در سیستم‌های تعلیق جداگانه به کار می‌روند، که از یک سو به شاسی متصل بوده و از سوی دیگر توسط یک بازو به چرخ متصل می‌شود و این بازو رابطی است میان لرزش‌های خطی چرخ و لرزش‌های زاویه‌ای میله پیچشی . سختی این گونه فنرها از دو بخش زیر شکل یافته است :

سختی پیچشی میله Kφ

سختی خمشی بازو Kb

این دو بخش به صورت سری قرار گرفته‌اند و بنابراین سختی کل به قرار زیر است :

(1-8)

میله پایدارنده

یکی از زیربخش‌های مهم سیستم تعلیق میله‌های پایدارنده است، که برای افزایش پایداری به کار می‌رود. نمونه‌ای از میله‌های پایدارنده، میله‌ای است که میل موج گیر (میله پادغلت) نامیده می‌شود. میل موج گیر میله‌ای فلزی است که به دو بازوی کنترلی چرخ‌های درونی و بیرونی متصل می‌شود. هنگام افت و خیز یکی از چرخ‌ها، میل موج‌گیر حرکت را به چرخ دیگر انتقال می‌دهد. میل موج گیر یک تراز بالا در هنگام رانندگی ایجاد می‌کند و سبب کاهش حرکات لرزشی در هنگام چرخش خودرو است . با توجه به پارامترهای طراحی میل موج‌گیر می‌توان تا 15 درصد در برابر حرکت غلتشی خودرو در هنگام چرخش ایستادگی کرد. میله پادغلت در واقع نوعی فنر پیچشی است با این تفاوت که در سیستم‌های یکپارچه نصب شده و تنها در برابر غلتش نسبی محور و شاسی واکنش نشان می‌دهد.

کاربرد میله‌های پادغلت در سیستم تعلیق

هنگامی‌که بدنه می‌غلتد و یا یکی از چرخ‌ها روی دست‌انداز یا درون چاله قرار می‌گیرد، میله پادغلت سبب افزایش سختی فنریت تعلیق است، یعنی فنریت آن را کاهش می‌دهد. هنگامی‌که خودرو در راستای مستقیم حرکت می‌کند، میله پادغلت، سبب نرمی‌فنریت تعلیق شده و بنابراین خوش سواری خودرو را بهبود می‌بخشد.

میله پادغلت یک میله پیچشی می‌باشد که به چند بخش تقسیم شده است و به صورت کناری و با یاتاقان و بوش‌های لاستیکی به بدنه لولا می‌شود و همینطور از دو طرف به بازوهای لنگیده متصل شده است.

کارکرد میله پادغلت

اگر افت و خیز چرخ‌ها برابر باشد، آنگاه بازوهای لنگیده همسو بوده و بنابراین میله پادغلت نقشی در سختی غلتشی محور نخواهد داشت.

اگر افت و خیز چرخ‌ها برابر نباشد ، به طور نمونه چرخ راست روی برآمدگی قرار گرفته و بالا رود، در این حالت بازوی کنترل سمت راست بالا رفته و سبب گردش بازوی لنگیده چسبیده به آن سوی راست می‌شود. اما بازوی لنگیده سمت چپ تغییر نکرده و بنابراین تفاوت زاویه گردش بازوهای لنگیده سبب ایجاد گشتاور در میله پادغلت می‌شود و بنابراین نیرویی رو به بالا در سمت چپ بدنه ازطریق یاتاق‌های بوش های لاستیکی اعمال می‌شود و بنابراین سمت چپ بدنه به بالا می‌رود. بنابراین سمت راست چرخ‌ها بالا رفته و بنابراین بدنه بالا می‌رود و در سمت چپ کشش میله پادغلت سبب بالا رفتن بدنه می‌شود. بنابراین بدنه بدون غلتش در موقعیت بالاتری قرار می‌گیرد. بنابراین وظیفه میله پادغلت جلوگیری از غلتش و کجی بدنه با تغییر ارتفاع آن است.

فنر تخت

فنر تحت در هر دو سیستم تعلیق جلو و پشت به کار می‌رود. این فنرها به صورت کناری نیز به کار می‌روند و با این طرح وسط فنر به اسکلت متصل شده و هر یک از دو انتهای آن یک چرخ را نگهداری می‌کند. طرز عمل این فنرها مانند تمام فنرهای تخت است موقعی که چرخ با یک برآمدگی برخورد می‌کند فنر به بالا خم می‌شود ضربه را مستهلک می‌نماید و برعکس هنگامی‌که چرخ در یک گودی می‌افتد به طرف پایین خم می‌شود بدین ترتیب فنر تخت در وسایل نقلیه مانند فنر مارپیچی عمل می‌کند فنرها معمولا به طور مکانیکی با وسائلی از قبیل بالشتک و بوش لاستیکی از بدنه عایق‌بندی شده‌اند این عمل از انتقال لرزشها به اسکلت و بدنه جلوگیری می‌کند.

در حالت معمول این فنرها بصورت چند لایه می‌باشند که بزرگترین فنر را شاه‌فنر می‌گویند و لایه‌های دیگر فنر نسبت به شاه فنر کوچکتر می‌باشند و به کمک میله‌ای در وسط به یکدیگر متصل شده‌اند و به وسیله گیره‌های مخصوصی از لغزیدن آنها در جهات مختلف جلوگیری می‌شود. در فنرهای شمشی شاه فنر به کمک میله یا بوش در یک طرف به قاب وصل می‌شود و از طرف دیگر به کمک میله U شکل که گوشواره نامیده می‌شود به رام خودرو متصل می‌گردد. این گوشواره تغییر طول فنر را در اثر نوسان آن فراهم می‌سازد. همچنین بوش به کار رفته در این فنرها برنجی می‌باشد که به کمک گریس از سایش آن جلوگیری می‌شود. البته در خودروهای سبک از لاستیک هم استفاده می‌شود.

شکل 7 ـ ساختار فنر تخت

لایه‌های دیگر فنر تخت نسبت به شاه‌فنر انحنای بیشتری دارند و برای بستن آنها پیش‌بار (فشار اولیه) به کار می‌رود. این فشار اولیه سبب میرایش ضربات و لرزش‌های فنر می‌گردد. این ویژگی یکی از برتری‌های فنر تخت است.

شکل 8 ـ روشهای گوناگون اتصال فنر تخت

برای سهولت نگهداری فنرها آنها را در تکیه گاههای لاستیکی مفصل می‌کنند. این مفصل‌ها معمولا از دو بوش تشکیل شده‌اند که میان آنها لاستیک ریخته شده است. لاستیک به بوش درونی توان گردش و خاصیت لرزه گیری را می‌دهد. برای سادگی لغزش لایه‌های فنر روی یکدیگر و نیز افزایش ویژگی‌ لرزه‌گیری آنها میان لایه‌ها قشری از روغن گرانیتی قرار می‌دهند، نیز این غشا از زنگ زدگی فنر جلوگیری می‌نماید. می‌توان بجای روغن از ورقه‌های مخصوص پلاستیکی استفاده کرد. برای جلوگیری از نفوذ رطوبت و گرد و غبار به فنر،‌آن را در پوششی از لاستیک قرار می‌دهند. شکل زیر یک فنر تخت و قطعات متصل به آن را نشان می‌دهد.

شکل 9 ـ شعاع مؤثر فنر تخت

فنرهای تخت به صورت طولی در قسمت جلو توسط پیش و بوش و برنجی و لاستیکی به شاسی متصل می‌شود و در اتصال ناحیه عقب از یک محور گردان (گوشواره‌ فنری) استفاده می‌گردد. با قرار دادن شیکل در سیستم تعلیق پشت می‌توان کم فرمانی خودرو را افزایش داد.

شکل 10 ـ ابعاد فنر تخت

دلایل کاربرد اتصال گوشواره‌ای به قرار زیر است :

فنر آزادی حرکت در تمام جهات را داشته باشد.

لاستیک گوشواره موجب جذب ارتعاشات و جلوگیری از منتقل شدن آن به بدنه می‌شود.

در بعضی از طراحی‌ها در اتصال ناحیه پشت برای فنر تخت بجای گوشواره از یک بلوک شیاردار استفاده می‌شود که خود بلوک به بدنه ثابت شده و فنر تخت در داخل شیار حرکت می‌کند در نتیجه طول مؤثر فنر تغییر می‌کند.

کاستی‌های فنر تخت به قرار زیر است :

اصطکاک خشک میان لایه‌های آن که سبب کاهش خوش‌سواری است.

کاهش پایداری کناری به ویژه هنگامی‌که طول فنر را برای افزایش نرمی‌فنریت آنها افزوده‌اند.

شکل 11 ـ تغییر شکل فنر تخت (Wind Up) در برابر گشتاور محور

چند لایه سازی فنر تخت

در طراحی فنر تخت چون هدف تحمل تنش برشی بیشتر می‌باشد پس ممکن است مطرح شود که جنس تیغه‌ها را نرم بگیریم تا تحمل تنش برشی بیشتری را داشته باشد. ولی می‌دانیم وقتی جنس فنر نرم باشد تحمل بار را ندارد و زیر بار خم می‌شود. پس بایستی جنس فنر سخت باشد در نتیجه برای افزایش تحمل تنش برشی، بایستی قطعات فنر را به صورت لایه لایه تهیه کرد. هر چه تعداد تیغه‌ها بیشتر باشد تحمل تنش برشی بیشتری را دارد. در شکل زیر این مطلب به طور وضوح نشان داده شده است.

شکل 12 ـ تاثیر چندلایه سازی فنر تخت برشکست آن

البته علت دیگر چندلایه سازی این است که تنش در میان تیر بیشینه بوده و در دو سر تیر کمترین مقدار خود را دارا است، که رابطه زیر این مطلب را می‌نمایاند :

(1-9)

پس برای برطرف نمودن این نقیصه و همچنین برای اینکه بتوانیم تنش تقریباً یکنواختی در طول تیر داشته باشیم تیر را با سطح مقطع نایکنواخت می‌سازند.

شکل 13 ـ نمودار گشتاور و تنش خمشی در فنر تخت ساده و فنر تخت لوزی گون

اصطکاک خشک

موضوع مهمی‌که در ارتباط با فنرهای تسمه‌ای مطرح می‌شود اصطکاک بین لایه‌ای است. در اثر اعمال بار و تغییر شکل فنر، لایه‌های آن بر روی یکدیگر می‌لغزند و این لغزش تولید اصطکاک می‌کند. راستای نیروی اصطکاک بر خلاف جهت حرکت آن است و مقدار نیروی اصطکاک متناسب با نیروی فنر است. به همین جهت برخلاف اصطکاک ثابت کولمبی که در آن نیروی اصطکاک همیشه ثابت می‌ماند در اینگونه فنرها نیروی اصطکاک از صفر تا یک مقدار ماکزیمم در نوسان است.

فنرهای پیچشی و مارپیچ تقریباً فاقد اصطکاک می‌باشند و به همین دلیل مزیت عمده‌ای نسبت به فنرهای تسمه‌ای دارند، در نتیجه تمایل به استفاده از فنرهای پیچشی و مارپیچ افزایش یافته است.

دلیل دیگری که استفاده از فنر پیچشی و مارپیچ را افزون کرده، وزن بیشتر فنرهای تسمه‌ای می‌باشد.

دسته‌بندی فنرهای تخت

فنرهای تخت که به بازار عرضه می‌شوند دو نوع می‌باشد :

ذوزنقه‌ای

در اینگونه فنر پهنای لایه‌ها در تمام طول آن یکسان است، که از نظر ساخت ارزان بوده ولی مواد بیشتری مصرف می‌شود.

شکل 14 ـ فنر تخت ذوزنقه‌ای

سهمی

در اینگونه فنر پهنای لایه‌ها در وسط بیشتر از دو طرف هر لایه است، که از نظر ساخت گران بوده ولی مواد کمتری مصرف می‌شود. بنابراین وزن کمتری دارد و جای کمتری را اشغال می‌کند. این گونه فنرها به شکلهای مختلفی در خودرو استفاده می‌شوند که در شکل 14 نشان داده شده است.

دو لایه مرحله‌ای

در بسیاری از خودروهای سنگین که وزن آنها در حالت بدون بار و با وجود بار تفاوت زیادی دارد، از فنر تخت دو لایه مرحله‌ای (دو ردیفه) استفاده می‌شود. در این فنرها فنرهای پایین به فنر اصلی و فنرهای بالایی به فنرهای کمکی معروفند.

این فنر کمکی تنها هنگامی‌وارد عمل می‌شود که بار سنگینی روی وسیله نقلیه قرار گرفته و یا اینکه چرخ با دست انداز بزرگی در جاده برخورد نماید. هنگامی‌که فنر اصلی تا آخرین حد خود بسته شود، فنر کمکی را به سمت بالا حرکت داده و دو انتهای فنر کمکی به دو زائده تکیه گاه که روی شاسی قرار گرفته است، برخورد می‌کند. در این حالت فنر کمکی نیز خم شده و سختی آن به سختی فنر اصلی افزوده می‌گردد. (شکل 15)

شکل 15 ـ گونه‌های فنر تخت سهموی

شکل 16 ـ فنر تخت دو مرحله‌ای

فنر لاستیکی

فنرهای لاستیکی کاربردهای فراوانی در خودرو دارند. لاستیک جسمی‌سخت شونده است، ینی با افزایش تنش درونی آن، ایستادگی آن در برابر تغییر شکل افزایش می‌یابد. لاستیک در برابر برانگیختگی های پربسامد کم دامنه، جاذب انرژی خوبی است و بنابراین به عنوان جداساز لرزه کاربردهای فراوانی دارد.

پیش بینی ضریب سختی فنرهای لاستیکی برخلاف فنرهای مارپیچی به سادگی امکان‌پذیر نمی‌باشد زیرا :

به ساختار شیمیایی آن وابسته است.

وابسته به زمان و نرخ بارگذاری است (میرایی) .

تابعی ناخطی از بارگذاری است (سخت شوندگی) .

شکل 17 ـ ساختار و چارچوب مختصات اصلی فنر لاستیکی

جنس فنرها

فنرها معمولا از فولاد آلیاژی مخصوص فنر که تمایل سخت کردن است ساخته می‌شود مقدار کربن این فولاد حدود 5/0 درصد است برای فنرهایی که تحت تاثیر بار متوسط واقع می‌شوند این فولاد با منگنز آلیاژ می‌شود و دارای تنش برشی حدود 120 کیلوگرم بر مجذور میلی متر می‌باشد برای بارهای زیاد فولاد، فولاد آلیاژ شده با کرم وانادیوم به کار می‌رود و بدین ترتیب خاصیت ارتجاعی بیشتری به فولاد داده می‌شود. تنش برشی در این نوع فنرها حدود 135 کیلوگرم بر مجذور میلی متر است. فولادهای فنر معمولا در روغن آب داده می‌شوند.


بررسی عملکرد و کاربرد روانکارها در صنعت

واژه تریبولوژی از ریشه کلمه یونانی (تریبو) به معنی سایش و (لوژی) به معنی دانش است کاربرد اولیه این علم در یونان باستان، شناخت عوامل حمل سنگهای بزرگ بر روی سطح زمین و بهبود آنها بوده است امروزه این علم شامل مطالعه در مورد نیروی اصطکاک، فرسایش و استفاده از روانکارهای جدید برای کاهش این دو اثر است
دسته بندی روانشناسی و علوم تربیتی
فرمت فایل doc
حجم فایل 155 کیلو بایت
تعداد صفحات فایل 95
بررسی عملکرد و کاربرد روانکارها در صنعت

فروشنده فایل

کد کاربری 8044

عملکرد و کاربرد روانکارها در صنعت

فصل اول :

روان کاری و هدف از آن


تریبولوژی:

واژه تریبولوژی از ریشه کلمه یونانی (تریبو) به معنی سایش و (لوژی) به معنی دانش است. کاربرد اولیه این علم در یونان باستان، شناخت عوامل حمل سنگهای بزرگ بر روی سطح زمین و بهبود آنها بوده است. امروزه این علم شامل مطالعه در مورد نیروی اصطکاک، فرسایش و استفاده از روانکارهای جدید برای کاهش این دو اثر است.
در قرن گذشته تحقیقات گسترده ای برای بدست آوردن روانکارهای بادوام انجام شده که در نهایت منجر به استفاده از مواد افزودنی به روغنها به منظور ارتقای کیفیت آنها شده است. هدف نهایی تحقیقات در این زمینه به دست آوردن روانکارهایی است که هیچگاه نیاز به تعویض و یا ترمیم نداشته باشند. حاصل این تلاش شناسایی روانکارهایی متشکل از ذرات بسیار مواد آلی غیر اورگانیکی است. تحقیقات در این زمینه نشان می دهد اگر اندازه این مواد از100 نانومتر کمتر شود، ساختار بسیار متفاوتی را پیدا خواهند کرد. محصول بدست آمده نانولوبها (Nanolubricants) نامیده می شوند. ذرات کروی یا نانوتیوبها که ساختار اصلی نانولوبها را تشکیل می دهند، در زمان فعالیت،‌مانند میلیونها ساچمه مینیاتوری بین سطوح متحرک لغزیده و منجر به کاهش نیروی اصطکاک، دما و ارتقای کارایی ماشین آلات می شوند. این ذرات می توانند به کوچکترین منافذ قطعات نفوذ کرده و عمل روانکاری را بهبود بخشند. کاربرد این نوع از روانکارها در سطوح ناصاف به مراتب بهتر از روانکارهای فعلی است به همین دلیل تولید کنندگان با استفاده از آنها نیاز کمتری به ماشین کاری، صرف وقت و هزینه برای ساخت قطعات ماشین آلات خواهند داشت که این عامل، منجر به صرفه جویی در مواد و هزینه می شود. نانو روانکارها که در دو گروه جامد و مایع به بازار عرضه خواهند شد باعث کاهش نیروی اصطکاک و در نتیجه نیروی مصرفی و سوخت ماشین آلات می شوند. همچنین این مواد به عنوان مواد افزودنی برای روانکارها یا بصورت ترکیب با مواد دیگر و یا به تنهایی می توانند مورد استفاده قرار گیرند.

تطابق بهتر با محیط زیست در مقایسه با روانکارهای متداول امروزی یکی دیگر از مزایایی بسیار خوب نانو روانکارهاست. آزمایش های متعددی که توسط آزمایشگاههای مختلف فارماکولوژی در آمریکا و اروپا انجام شده سازگار بودن این گروه از روانکار را با محیط زیست تایید کرده است.

این مواد به هیچ عنوان سمی نیستند و موجب آلودگیِ آب، خاک وهوا نخواهند شد.
نانوتریبولوژی در فناوری های پیشرفته جدید مانند هموار ساختن سطوح دیسک های حافظه کامپیوتر برای افزایش کیفیت ذخیره اطلاعات و کاهش نیروی اصطکاک و انرژی مصرفی و جلوگیری از خوردگی قطعات نقش مهمی ایفا می کند. در صنایع سنتی مانند اتومبیل و هواپیما، هدف از جایگزین کردن نانو روانکارها بجای انواع مختلف روانکارهای در حال مصرف مانند روغن و یا گریس، بی نیازی به تعویض روغن، چسبندگی بهتر به قطعات به صورت فیلم های تک لایه ای، تحمل فشار مکانیکی بسیار زیاد و دمای کارکرد بیشتر است. حتی از آنها می توان در سطوح بیرونی کشتی و یا هواپیما برای کم کردن نیروی اصطکاک ایجاد شده توسط آب و یا هوا استفاده کرد.

در حال حاضر شرکت های متعددی مشغول تحقیقات در مورد نسل جدید روانکارها هستند. یک گروه محقق توانسته است محصول جدیدی با ساختار چندین شبکه از لایه های فیلم بر روی هم که دارای حفره های خالی (برای انعطاف پذیری بیشتر) است را بسازد. عملکرد محصول جدیدبه صورت حرکت قطعات بر روی تعداد بیشماری از لایه های ساخته شده از نانو بلبرینگ های سخت است. این شرکت محصول جدید خود را بنام نانو لوب، Nanolub نامیده است. مدیر این سازمان معتقد است که این روانکار می تواند جایگزین انواع روانکارهای متداول امروزی با6 تا10 برابر بازدهی بهترباشد. ساختار این بلبرینگها از دی سولفید تنگستن،‌ WS2 است. در این ساختار لایه های لغزنده بر روی یکدیگر باعث کم شدن اصطکاک و منافذ خالی باعث انعطاف پذیری بیشتر روانکار می شوند. با استفاده از این مواد، روانکار می تواند فشار و ضربات مکانیکی بسیار شدیدی را تحمل کرده و به صورت ذرات کروی سخت در سطوح ناصاف دندانه دار میان قطعات متحرک حرکت کند. علاوه بر آن، این مواد برخلاف روانکارهای معمولی می توانند در داخل خلل و فرج سطوح ناصاف نفوذ کرده و یک لایه نرم در حد یک مولکول را به وجود آورند. برخی از شرکت های تولیدی برای ساخت نانو روانکارها از ساختار نانو تیوب های کربنی استفاده کرده اند ولی مشخص شده که در طول زمان و با وجود نیروی اصطکاک، مواد بکار برد شده متلاشی و تجزیه می شوند. هم اکنون تحقیق در مورد بهینه سازی این مواد ادامه دارد. یکی از سازمان های تحقیقاتی بنام (NIST) در حال بررسی روش اختلاط مولکولهای مختلف به صورت یک فیلم تک لایه ای است. این تحقیق از روش ادغام مولکولها (حداکثر تا4 عدد)، که هر یک خاصیت ویژه ای مانند مقاومت در برابر سایش و خود ترمیمی دارند،‌ استفاده کرده است که در مجموع، یک نانو روانکار دارای قابلیت های یکایک ساختارهای ملکولها خواهد شد. برای مثال در یک ترکیب ملکولی چهارتایی، گروه اول مولکولها دارای خاصیت چسبندگی بسیارعالی به سطوح، گروه دوم بوجود آورنده یک فیلم روانکار بسیار مقاوم، گروه سوم محافظ در مقابل ضربات سخت و گروه چهارم حرکت در کلیه سطوح برای از بین بردن نیروی اصطکاک است.

امروزه دستگاههای بسیاری برای اندازه گیری نیروی اصطکاک، کیفیت روانکارها و میزان سایش قطعات به صورت سنتی وجود دارد. این دستگاهها که تریبومیتر نام دارند، دارای روشهای مختلفی در عملکرد خود هستند مانند حرکت یک میله،‌یک کره و یا یک صفحه برروی صفحه دیگر و نظایر آن. اندازه گیری پارامترهای فیزیکی و شیمیایی روانکارها در مقیاس نانو دارای پیچیدگی بسیار زیاد بوده و بسهولت انجام نمی گیرد. برای این منظور استفاده از وسایل جدیدی مانند میکروسکپهای نیروی اتمی، (Atomic force microscope) که به اختصار AFM نام دارند،‌ضروریست. این وسیله می تواند در مقیاس و ابعاد نانو، عملکردهای متفاوتی شامل مشاهده سه بعدی خوردگی، ترک خوردگی یک سطح، اندازه گیری قطر ذرات جامد و یا مایع روانکارها، سنجش ضخامت فیلم روانکارها در حد تک لایه، محاسبه نیروی اصطکاک، بدست آوردن اشکال سطوح و ناهمواری آنها، اندازه گیری سختی سطوح و قابلیت ارتجاع و تغییر در ابعاد نانو را داشته باشد. مزایای دیگر این دستگاه عبارتست از: قابلیت کاربرد آن برای کلیه مواد، شامل: سرامیک ها، فلزات، پولیمرها- نیمه هادی ها و مغناطیسها،‌ نور، موارد بصری و عناصر بیولوژیکی در اتمسفر و خلاء.

شرکت (ApNano Material ) ، تولید کننده انواع محصولات نانو و اولین سازنده نانولوبها (یک نوع روغن سنتتیک غیرآلی) است. نانولوبهای ساخته شده کنونی که در حال حاضر در مقیاس آزمایشگاهی تولید می شوند، غیرسمی و سازگار با محیط زیست هستند که کیفیت و عملکرد بسیار خوب آنها توسط کارخانه های اتومبیل سازی جهان به تایید رسیده است. همچنین این مواد می توانند بجای ادتیوها برای بهبود کیفیت روغن های موتور، دنده و هیدرولیک استفاده شوند. مهمترین مزیت این محصولات کاهش مصرف سوخت و گازهای زیان آور موتور است. استفاده از نانولوبها در آزمایشگاههای تحقیقاتی علوم پزشکی نیز بسیار مورد توجه قرار گرفته است. به تازگی شرکت اتومبیل سازی فولکس واگن برای ساخت روانکارهایی با کیفیت بالا که در صنایع هوایی و صنایع برودتی کاربرد دارند، توانسته است با شرکت ApNano Material و یک شرکت دیگر
آمریکایی با نام Hatco Corporation یک قرارداد مشارکتی منعقد کند.
تولید انبوه تا سه سال آینده با درآمد سالیانه بیش از100 میلیون دلار شروع خواهد شد. درآمد حاصل از فروش ادتیوها سالانه در حدود یک میلیارد دلار برای تمامی تولیدکنندگان بوده و با استفاده از مواد نانو می توانند آن را به37 میلیارد دلار افزایش دهند.
با توجه به موارد اشاره شده، ساخت نانو روانکارها نیازمند هماهنگی بسیاری از صنایع تولید کننده، ‌سازندگان مواد افزودنی و مصرف کنندگان است. شرکت هایی که بخواهند این نوع روانکار را تولید کنند با مشکل عمده ای روبرو هستند و آن صرفه اقتصادی در سرمایه گذاری اولیه است. اگر این روانکارها در ماشین آلات ریخته شوند دیگر تعویض نشده و خرید آنها فقط یکبار بیشتر نیست و پس از اشباع بازار دیگر خریداری برایش وجود نخواهد داشت. این نوع روانکارها برای مصرف کنندگان بسیار ایده ال است ولی آیا برای تولید کنندگان روانکار نیز همین گونه است؟

توقع دیدن این محصولات را به این زودی در مغازه ها نداشته باشید زیرا برای ساخت750 گرم آن در یک واحد بزرگ تولیدی، یک روز کامل فرایند مورد نیاز است.

روانکاری

عوامل زیر را در هنگام برنامه ریزی روانکاری تجهیزات لحاظ کنید : - تعداد و محلهای

عوامل زیر را در هنگام برنامه ریزی روانکاری تجهیزات لحاظ کنید : - تعداد و محلهای روانکاری هر دستگاه.

- دوره تناوب روانکاری.

- نحوه و روش روانکاری ( استفاده از پمپ، گریس پمپ، قیف ، برس موئی و( ...

- حجم و میزان روانکار.

- نوع روانکار.

- معادل و جایگزین روانکار.

- وضعیت دستگاه حین روانکاری

قبل از برنامه ریزی در خصوص روانکاری تجهیرات و ماشین آلات مطالب زیر مطالعه نمایید :

وظایف عمده روغن عبارتند از :

ایجاد فیلم روغن بین سطوحی که روی هم می لغزند.

نظیر رینگ و پیستون روی سطح سیلندر و یا میل لنگ روی سطح یاتاقان.
فیلم روغن عبارت است از یک لایه نازک روغنی که بین سطوح قرار گرفته و از تماس دو سطح با یکدیگر جلوگیری می نماید.برای مثال دو قطعه شیشه را اگر بخواهیم روی هم حرکت دهیم ، این کار به سختی صورت می گیرد و دو سطح روی هم اثر تخریبی و خش خواهند گذاشت ولی با استفاده از فیلم روغن بین دو سطح می توان از تماس آنها جلوگیری کرد.

جلوگیری از زنگ زدن قطعات داخلی.
جذب حرارت از قطعات داخلی و انتقال آن به جداره های بیرونی.
آب بندی محفظه بمنظور جلوگیری از خروج گازهای متصاعد شده در موتورها.
شناورسازی براده ها و ذرات ریز داخلی و انتقال انها به داخل فیلترها.
واضح است که روغنی دارای کیفیت بالاتر است که بتواند پنج وظیفه فوق را بهتر انجام دهد.
یکی از خصوصیات مهم در شناسایی روغن گرانروی یا ویسکوزیته (viscosity) آن می‌باشد.

گرانروی :

عبارت است از مقاوت روغن در مقابل جاری شدن.

روغن بایستی نه آنقدر غلیظ باشد که نتواند داخل شیارهای نفوذ کند و نه آنقدر دارای غلظت کمی باشد که همواره بین قطعات نشست نموده و فیلم روغن را تشکیل ندهد.
روغنها در بازار معمولاً با اعدادی مانند 30،40، 50 معرفی می شوند و این اعداد نشان دهنده زمانی هستند که حجم ثابتی از روغن در دمای 40 درجه سانتی گراد از یک قیف استاندارد جاری می شود.

در تهیه برنامه روانکاری می توان از سرویسهای خدماتی و مشاوره ای که توسط تولید کنندگان روغن های صنعتی ارائه می گردد استفاده نمود.داشتن لیست روغن های مشابه و مرغوب با مارک های متفاوت می تواند بخش نت را در انتخاب انواع روغنهای مناسب و قابل استفاده یاری نماید.بدیهی است که باید تا حد ممکن از بکارگیری تنوع زیاد روغن های صنعتی خوداری شود.

عوامل زیر را در هنگام برنامه ریزی روانکاری تجهیزات لحاظ کنید :

- تعداد و محلهای روانکاری هر دستگاه.
-
دوره تناوب روانکاری.
-
نحوه و روش روانکاری ( استفاده از پمپ، گریس پمپ، قیف ، برس موئی... )
-
حجم و میزان روانکار.
-
نوع روانکار.
-
معادل و جایگزین روانکار.
-
وضعیت دستگاه حین روانکاری


کلیات

روانکاری " مناسب " یکی از مهمترین قسمتهای هر برنامه نگهدای می باشد . کلمه کلیدی در اینجا کلمه مناسب است . یک روانکاری مناسب زمانی انجام می شود که موارد زیر در آن رعایت شود :

1. استفاده از روانکار مناسب

2. استفاده صحیح و به کار بردن مقدار مناسب روانکار

3. چک کردن و کنترل کردن در بازده های زمانی تعیین شده اگر از روانکار نامناسب استفاده شود و یا به صورت نا صحیح از روانکار استفاده گردد ، نتایج اغلب ، بسیار نامطلوبتر از زمانی است که شما هیچگونه روانکاری انجام نداده باشید . هیچ نوع روانکار جادوئی وجود ندارد که تمامی نیازهای روانکاری را پوشش دهد و باعث صرفه جوئی های غیرمعمول نظیر افزایش عمر روانسازها و یا کاهش ضررهای ناشی از اصطحکاک گردد .

مانند همه محصولات دیگر ، افرادی که در کار فروش روانکار هستند ادعاهائی در مورد قابلیت های محصول خود مطرح می کنند که تاکنون توسط تست ها و آزمایشهای فنی تأئید نشده است .

خصوصیات یک روانکار :

روغن ها :

روغن معدنی یکی از معمولترین روانکارها می باشد و به غیر از چند استثناء برای روانکاری اغلب آسانسورها و پله برقی ها به کار برده می شود . از انواع دیگر روانکارها می توان به روغن های گیاهی ، سیلیکونی ، فسفات استر ، فلوروکربنها اشاره کرد . از روغنهای ذکر شده تنها نوع سیلیکونی کاربرد زیادی در صنعت آسانسور دارد . سایر روانکارها در موارد خاص کاربرد دارند و از آنها ممکن است تنها در شرایط خاصی استفاده شود .

خصوصیات روغن ها :

1. گرانروی یکی از مهمترین خصوصیات یک روغن بوده و نیز یکی از معیارهای سنجش غلظت روغن است . هر چه این عدد بیشتر باشد نشان دهنده غلظت بیشتر روغن است . گرانروی یک روغن بر اساس زمانی که مقدار 60 میلی لیتر از آن در دمای تعیین شده از یک منفذ استاندارد عبور می کند برحسب ثانیه تعیین می گردد . واحدهای گرانروی Saybolt Second Universal ) SSU ) می باشند . از گرانروی مطلق و گرانروی کینماتیک نیز ممکن است استفاده شود . گرانروی کینماتیک با واحد سانتی استوک به صورت وسیعی در مهندسی و آزمایشگان به کار می رود و نشان دهنده استحکام برشی روغن است . در سیستم SAE ، درجه بندی روغن موتور به صورت حداکثر و حداقل گرانروی در یک دامنه تغییر دما تعیین می گردد . به طور مثال ، SAE 5W-20 دارای گرانروی بالاتری در دمای 200 درجه فارنهایت بوده و معمولاً به عنوان روانکار برای سیم بکسل ها به کار برده می شود . روغن های با گرانروی کمتر معمولاً به " روغنهای سبک " معروف هستند .

هنگام استفاده از سیستم SSU برای نشان دادن میزان گرانروی حتماً باید دمائی که در آن اندازه گیری انجام شده ذکر شود . از آنجائی که گرانروی با دما تغییر می کند ، بی معنا خواهد بود اگر که گرانروی را بدون مشخص کردن دمای مربوطه استفاده کنیم .

2. شاخص گرانروی ، بیانگر عددی تغییر در گرانروی متناسب با تغییرات دما می باشد . هرچه که مقدار این شاخص بیشتر باشد ، گرانروی به میزان کمتری با دما تغییر می کند . کمترین میزان شاخص گرانروی صفر و بالاترین میزان آن 100 می باشد . هنگامی که این شاخص پایه گذاری شد ، مقیاس طوری تعیین شده بود که 100 حداکثر مقدار شاخص قابل دسترسی بود . با این وجود بعضی از روغن های جدید ، به خصوص روغن های مصنوعی ممکن است دارای شاخص گرانروی بالای 150 باشند .

3. نقطه ریزش ، دمائی است که در آن روغن در شرایط از پیش تعیین شده ، جاری می‌شود .

4. نقطه اشتغال ، دمائی است که در آن دما در حضور اکسیژن ، احتراق اتفاق می افتد .

5. نقطه آنیلین ، معیار و مقیاسی است برای نمایش قابلیت حلالیت یک محصول نفتی .

افزودنی ها :

به تمامی روانکارها افزودنی های مختلفی برای بالا بردن و بهبود عملکرد و خواص افزوده می شود .

1. بهبود دهنده شاخص گرانروی : این افزودنی میزان تغییر گرانروی را نسبت به دما کاهش می دهد. روغن های چند درجه دارای چنین افزودنی هائی هستند .

2. زداینده ها : از این افزودنی برای کاهش رسوب در اطراف قطعات متحرک ، استفاده می شود .

3. پراکنده ها : برای معلق نگاه داشتن آلودگی ها در داخل روغن و جلوگیری از جمع شدن آنها بر روی سطوح جدا کننده ها لغزش روی آن انجام می شود کاربرد دارند . این افزودنی همچنین باعث می شود تا بتوان آلودگیهای بزرگ را به راحتی فیلتر و تصفیه کرد .

4. عاملهای ضد سائیدگی : این افزودنی ها برای کاهش اصطحکاک در مواردی که فشار بالاست کاربرد دارد .

5. آنتی اکسیدان ها : این گونه افزودنی ها برای کاهش میل به ترکیب شیمیائی روغن با اکسیژن به کارگرفته می شود .

6. کاهنده های زنگ و خوردگی : این افزودنی ها را برای خنثی کردن اسید هائی که در اثر استفاده دراز مدت از روغن تولید شده ، استفاده می شود .

7. پیراینده های اصطکاک : از این افزودنی ها برای بهبود خاصیت کاهندگی اصطحکاک روغن استفاده می شود .

8. کند کننده های نقطه ریزش : این افزودنی ها باعث کاهش تشکیل کریستالهای مومی در دماهای پائین می شوند و به همین سبب دمای ریزش کاهش پیدا می کند .

9. کاهنده های کف ( ضد کف ) : روغنی که دارای کف باشد روانکار بسیار ضعیفی است.

این افزودنی ها باعث از بین رفتن حباب های هوا شده و میزان کف موجود در روغن را کاهش می دهند. برای شرایط و نیازهای خاص ، افزودنی های دیگری نیز وجود دارند . ترکیب دقیق شیمیائی افزودنی ها برای تولید کنندگان آنها جزء رازهای تجاری محسوب می گردد . به طور معمول ، یک تولید کننده ، روانکار خود را با یک نام و نشان تجاری خاص عرضه می کند .

معمولاً بهتر است از روانکارهائی که کارخانه تولید کننده مشخص می کند استفاده شود . حتی اگر بهای آن از سایر روانکارهای موجود گرانتر باشد . از تولید کنندگانی که ادعا می کنند با دو یا سه نوع روانکار تمامی نیازهای روانکاری را پوشش می دهند برحذر باشید . استفاده از روغن و روانکار نامناسب می تواند عواقب بسیار جبران ناپذیری را در پی داشته باشد .

کاهش تشکیل آلاینده ها و رسوبات در تجهیزات، موجب بهبود کارآیی و افزایش طول عمر آنها می گردد:

در جعبه دنده ها، دستگاههای هیدرولیک و موتورها پس از مدت کوتاهی کار، آلودگی هایی ناشی از اکسید شدن روغن در حین کار بروز می کند که علت اصلی آن وجود آب و ذرات ناشی از اصطکاک است. در نتیجه اکسید شدن روغن رسوبات صمغی و لجن در روغن تولید می گردد که خود باعث آلودگی روغن می شود در نهایت این آلودگی ها سبب تخریب روغن، افزایش دمای کارکرد، مصرف بیشتر انرژی، سایش اجزاء دستگاه و ... می شود. حتی ممکن است در دستگاه های جدید نیز این گونه آلودگی ها که موجب بروز مشکلات فوق می گردند مشاهده شود.

امروزه به کمک تکنولوژی های جدید می توان آلودگی ها را در دستگاه های در حال کار کاهش داد مثلا سطوح فلزی به گونه ای طراحی شده اند تا عوامل فعال کننده سطحی آنها مانع از تشکیل رسوبات صمغی بر روی سطوح فلزی شود. این فرآیند موجب افزایش عمر دستگاه و کاهش فرسودگی فلزات، کاهش دمای عملیات و مصرف انرژی می شود.

تخریب روانکار

درک اساسی چگونگی تشکیل رسوبات به منظور هدایت سیستم به سمت بهبود قابل اطمینان وضعیت، ضروری است. تشکیل رسوبات هنگامی که روانکار تخریب و به ترکیبات دیگر تبدیل می گردد، بیشتر می شود. روش های مشخصی برای کاهش سرعت تشکیل رسوبات وجود دارد. روانکارها می توانند به دلایل مختلف (جدول 1) تخریب شده و تولید لجن، لاک و رسوبات کنند. هنگامی که روانکار اکسید می شود، مواد فعالی را تشکیل می دهد که با تغییر ساختار به رسوبات مختلف تبدیل می شوند.

جدول 2 انواع رسوبات تشکیل شده و مشکلات ایجاد شده به هنگام تخریب روغن روانکار را نشان می دهد.

رسوبات با پایه هیدروکربنی نظیر مواد صمغی، مواد چسبناک و لجن، ناشی از روغن اکسید شده هستند. این مواد معمولا دارای اندازه مولکولی بزرگ در مقایسه با سایر ترکیبات موجود در روانکار (به غیر از روغن پایه) هستند.

به طور کلی دو روش پلیمریزاسیون مرحله ای و پلیمریزاسیون زنجیری موجب تولید مولکول های بزرگ می گردند. پلیمریزاسیون مرحله ای از طریق واکنش های مرحله ای بین عوامل شیمیایی مولکول های واکنش گر انجام می گیرد. اندازه مولکول با سرعت نسبتا کمی افزایش می یابد. دو مولکول فعال با یکدیگر ترکیب شده و تولید مولکول فعال دیگری را می نماید و این مولکول بزرگ با یک مولکول دیگر ترکیب می شود ... و به همین منوال این عمل ادامه می یابد تا زمانی که مولکول های بزرگ پلیمر تشکیل گردند.

پلیمریزاسیون زنجیری نیاز به یک مولکول آغازگر دارد که این مولکول معمولا به شکل رادیکال آزاد و یا سایرگونه های فعال (آنیون ها یا کاتیون ها) ممکن است توسط شرایط موجود در جعبه دنده ها (transmissions انتقال دهنده های نیرو)، سیستم های هیدرولیک یا موتور تولید گردند. پلیمریزاسیون زنجیری توسط انتشار مولکول فعال از طریق تعداد زیادی از مولکول های بزرگ فعال دیگر صورت می گیرد.

جدول 1. منابع تشکیل رسوب

عملکرد

مکانیزم

روغن پایه

روغن پایه شامل یک یا بیشتر از اجزاء و عوامل زیر است:

اجزای سبک، گوگرد، هیدروکربن های با وزن مولکولی پایین

ناکافی بودن غلظت مواد افزودنی مؤثر

غلظت کم مواد و عوامل ضد سایش و نیز اصلاح کننده های اصطکاک موجب ایجاد خوردگی در فلزات و نیز تشکیل حرارت منطقه ای دراثر اصطکاک می گردد. غلظت پایین دمولسیون کننده می تواند موجب تشکیل امولسیون روغن شده که خود موجل افزایش اکسیداسیون روغن می گردد.

فلزات زرد

(مس _ برنج _ برنز)

آلودگی های حاصل از منابع خارجی و داخلی می توانند به عنوان کاتالیست فرآیند اکسید شدن روغن عمل کنند و موجب تخریب مواد افزودنی و تشکیل رسوبات شوند.

حرارت

دمای بالای محیط، حرارت عملیات (ناشی از انرژی سینتتیکی حاصل از احتراق)، گرمای اصطکاک (ناشی از تماس فلز با فلز) و فشار (ناشی از ورود هوا و یا عملیات ) موجب تسریع در اکسیداسیون روغن و تخریب مواد افزودنی گردند.

آب

محصولات جانبی احتراق و یا آلودگی های خارجی می توانند باعث افزایش اکسید شدن روغن و تشکیل رسوبات و کاهش و تخریب مواد افزودنی گردند.

اسیدها

می توانند هنگامی که روغن پایه به صورت ترکیبات فعال و واکنش پذیر شکسته می شود، تشکیل گردند. این عمل موجب تولید لجن، صمغ و رسوبات می شود همچنین اسیدها از طرِق منابع خارجی از قبیل شستشو با اسید می توانند وارد سیستم شوند. انواع عمومی این اسیدها شامل: اسید سولفوریک، اسید نیتریک و اسیدهای کربوکسیلیک هستند.

مواد قلیایی و حلال ها

آلودگی های خارجی موجب شکستن مولکول های روغن به ترکیبات فعال می گردد. ترکیبات فعال می توانند پلیمریزه شده و تولید رسوبات شبیه به رزین نمایند.

چرا رسوبات تشکیل می شوند؟

دلایل متعددی برای تشکیل رسوبات در سیستم های روانکاری وجود دارد. به طور کلی، روغن از یک ساختار مولکولی به ساختار دیگری تغییر شکل می یابد و رسوبات به صورت مخلوطی از آلودگی ها نظیر دوده حاصل از روغن موتور و یا لجن های ناشی از ورود گرد و غبار در روغن هستند. همچنین این رسوبات ممکن است ناشی از مواد صمغی تشکیل شده در شرایط دمای بالا و بار زیاد بر روی اجزاء دستگاه باشند. بیشتر اوقات رسوبات ناشی از تخریب روغن پایه و تشکیل ترکیبات جدید در اثر تغییر ساختار روغن است که در طول مراحل مختلف توسعه می یابد. اولین مرحله عبارت است از شکل گیری ترکیبات فعال و یا رادیکال آزاد که ناشی از عوامل مختلفی است. ابتدا این ترکیبات در سیستم ترکیب و یا پلیمریزه شده و به ترکیبات جدیدی به شکل رسوبات تبدیل می شوند. شرایط محیطی مختلفی موجب سهولت ایجاد رسوبات می شوند که از جمله عبارتند از:

دما، فشار، آب، حلال ها، اسیدها، ترکیبات قلیایی و فلزات مختلف.


جدول 2. نگاهی به رسوبات معمول در روانکارها

رسوب و تشکیل آن

مکانیزم بالقوه

رسوبات در یاتاقان، سیلندر، پیستون، دنده ها، پمپ ها و توربین ها یافت می شوند. روغن یا سوخت اکسید شده، تشکیل مواد چسبناک می دهد و این ترکیبات تبدیل به رسوباتی حاوی مولکول هایی می گردند که در روغن غیر قابل حل هستند.

پوشش لاک مانند، موجب سایش دنده ها به دلیل افزایش غیر متعادل مصرف انرپی می گردد. این عامل مربوط به عدم روانکاری مناسب در سطح فلز و افزایش گرانروی روغن است.

رسوبات صمغی در یاتاقان، سیلندر، پیستون، دنده ها، پمپ ها و توربین ها یافت می شوند. هرگاه لایه رسوب بر روی سطوح در معرض دما و فشار بالاتر قرار گیرد، پخته شده و غیر قابل حذف می شود.

رسوبات صمغی منجر به سایش دنده ها ناشی از افزایش مصرف انرژی شده و باعث افزایش دما به دلیل فقدان روانکاری برروی سطح فلز می گردد. برداشتن این لایه بسیار مشکل است.

لجن در داخل ظروف روغن، وسایل نگهداری و ذخیره و نیز یاتاقان ها تشکیل می گردد. تشکیل لجن از وقتی شروع می شود که آلودگی ها شروع به ته نشین شدن در خارج از روغن می نمایند. رسوبات با جمع شدن آلودگی ها بر روی یکدیگر افزایش یافته و منجر به تخریب مواد افزودنی و اکسیداسیون آنها می گردند.

لجن مجموعه ای از آب، ترکیبات کربنی، روغن اکسید شده و ترکیبات اسیدی است که منجر به تخریب بیشتر روغن می گردد. لجن می تواند مانع از جاری شدن روغن شده که خود منجر به افزایش فشار، دما، خوردگی و گرانروی روغن می گردد.

مواد چسبناک، به طور معمول در محفظه روغن و یا ناحیه احتراق موتور یافت می شوند. ترکیبات چسبناک هنگامی که هیدروکربن های روغن و یا سوخت و نیز مصولات حاصل از احتراق در اثر دمای بالا شکسته می شوند، تشکیل می گردد. مواد چسبناک به عنوان متصل کننده آلودگی ها به پیستون ها، رینگ ها و لوله ها عمل می نمایند.

مواد چسبناک می توانند برروی لوله ها، پیستون ها، حلقه ها، شیارهای رینگ (ring grooves) و دیواره های سیلندر تشکیل گردند و موجب ایجاد آلودگی و نیز ترکیبات زائدی که باعث محدود شدن روانکاری است، باشند. کاهش روانکاری موجب افزایش اصطکاک و خوردگی و نیز محدود نمودن وظیفه انتقال حرارت روغن روانکار می گردد.

رسوبات کربنی موجود در تمام سیستم های روانکاری از قبیل موتورها، بلبرینگ ها، پمپ ها، دنده ها و یاتاقان ها، بیشترین شکل این رسوبات به صورت دوده است. همچنین می توانند به صورت ترکیبات شبه قیر نیز وجود داشته باشند. دوده شکل پیشرفته تشکیل رسوب است.

به محض تشکیل رسوبات کربنی، آلودگی های اضافی تشکیل شده موجب تسهیل در اکسیداسیون می گردد. رسوبات می توانند تشکیل یک توده ژله ای و یا سیال را بدهند. رسوبات باعث محدود شدن جریان روانکار و عملکرد مواد افزودنی می گردند.

رادیکال های آزاد از طریق روش های مختلف تشکیل می شوند. یکی از این روش ها، استفاده از انرژی مکانیکی حاصل از فشار ترکیب شده با تغییر شکل برشی و یا تغییرات ناگهانی (شوک) در طول یک فرآیند غیر دمایی است.

روش دیگر ناشی از وجود اسیدها است که موجب شکستن پیوندهای مولکولی می گردد. مولکول های با زنجیر کوتاه و یا متوسط موجود در روغن می توانند تخریب و شکسته شده و تولید رادیکال های آزاد نمایند. رادیکال های دارای زنجیر کوتاه به سرعت به گونه های شبیه به خود و یا آلودگی ها متصل شده و توسط پلیمریزاسیون به رسوبات تبدیل می گردند. روغن با مولکول های زنجیر بلند، رادیکال هایی با فعالیت کمتر، تولید می کند که دلیل آن ناشی از طول پیوند و حرکت محدود مولکولی است.

حرارت زیاد و فشار نیز می تواند باعث شکسته شدن پیوند مولکولی شده و تشکیل رادیکال آزاد نماید که با پلیمریزاسیون رادیکال ها رسوبات ایجاد می شوند.

آرایش های مولکولی بی شماری در رسوبات وجود دارد، چنانچه قبلا اشاره شد، تشکیل رسوبات به طور کلی نتیجه تخریب روغن پایه و تبدیل آن به ترکیبات فعال است. اولین مولکول فعال تشکیل شده و طی واکنش با سایر ترکیبات فعال دیگر تغییر ساختار داده و تولید رسوب می کند. واکنش کلی برای تشکیل رادیکال آزاد و پلیمریزاسیون زنجیری در سه مرحله اتفاق می افتد:

مرحله آغازی

پلیمریزاسیون زنجیری رادیکال نوعی پلیمریزاسیون است که در آن یک رادیکال آزاد با زنجیر بلند با حمله به رادیکال های آزاد دیگر، (اسیدها و یا گونه های فعال که ناشی از تاثیر حرارت، آب، اسیدها، آلودگی ها و غیره هستند) مولکول اولیه را تشکیل می دهند.

مرحله انتشار

پلیزاسیون با افزایش واکنش زنجیره مولکول های فعال به مولکول های رشد یافته دارای انتهای رادیکالی، موجب تشکیل یک یا دو پلیمر به شکل رسوب (لجن، مواد صمغی و غیره) می گردد.

مرحله انتهایی

دو رادیکال آزاد رشد یافته (بزرگ) به صورت غیر متناسب با یکدیگر ترکیب و موجب اتمام واکنش پلیمریزاسیون می شوند (افزایش رسوبات).

سرعت واکنش با زمان و حرارت افزایش می یابد. این طبیعی است که فرض شود با گذشت زمان، سرعت کاهش یابد، بدین دلیل که غلظت مولکول های فعال و آغازگرها به دلیل شرکت در واکنش کاهش می یابد. اما درست خلاف این موضوع صحت دارد. سه مسیر که تحت نام مراحل انتهایی، نفوذ و مرحله کنترل (Termination steps , diffusion , controlled) شناخته شده است دلیل این رفتار را توجیه می نماید.

- اولین مسیر عبارتست از نفوذ دو رادیکال در حال انتشار تا زمانی که این دو در مجاورت یکدیگر قرار گیرند.

- دومین مسیر عبارتست از نفوذ جزیی زنجیره های پلیمر در این مسیر، نوآرایی دو زنجیره به گونه ای اتفاق می افتد که دو انتهای رادیکال آزاد هر یک از زنجیره ها به اندازه کافی به یکدیگر نزدیک شده تا بتوانند برهم کنش انجام دهند.

- سومین مسیر عبارتست از برهم کنش شیمیایی دو انتهای رادیکالی زنجیره ها برای تشکیل پلیمر و یا در این بحث تشکیل رسوب در طول واکنش.

مسیر اول سریع تر از افزایش سرعت دومین مسیر کاهش می یابد و در نتیجه یک شتاب خود به خودی در سرعت ایجاد می گردد. روند سینتتیک واقعی واکنش بسیار پیچیده و خارج از بحث این مقاله است.

هرگاه اکسیداسیون روغن و یا پلیمریزاسیون رادیکال آزاد گونه های فعال به سرعت تشخیص داده نشود، موجب بروز مسائل جدی خواهد شد. (جدول 2).


بررسی سیر تکامل ترمز اتومبیل ها از ابتدا تا امروز

امروزه استفاده از ترمزهای ضد بلوکه ABS به صورت استاندارد در اکثر اتومبیلها دیده می شود و کمپانی بوش از ابتدای سال 1987 تاکنون بیش از ده ملیون دستگاه ترمز ضد بلوکه ABS تولید و روانه بازار کرده است برای آگاهی از سیر تکامل ترمز اتومبیلها ، تاریخچه ساخت و چگونگی بهینه سازی و پیشرفت آنها را با هم مرور می کنیم در گذشته برای بیشتر رانندگان ، راندن و بحر
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 2441 کیلو بایت
تعداد صفحات فایل 85
بررسی سیر تکامل ترمز اتومبیل ها از ابتدا تا امروز

فروشنده فایل

کد کاربری 8044

مقدمه :

مروری بر سیر تکامل ترمز اتومبیل ها از ابتدا تا امروز

امروزه استفاده از ترمزهای ضد بلوکه ABS به صورت استاندارد در اکثر اتومبیلها دیده می شود و کمپانی بوش از ابتدای سال 1987 تاکنون بیش از ده ملیون دستگاه ترمز ضد بلوکه ABS تولید و روانه بازار کرده است برای آگاهی از سیر تکامل ترمز اتومبیلها ، تاریخچه ساخت و چگونگی بهینه سازی و پیشرفت آنها را با هم مرور می کنیم در گذشته برای بیشتر رانندگان ، راندن و بحرکت درآوردن و یا ادامه حرکت اتومبیلها جالبتر از ترمز کردن به نظر می رسید و شاید کمتر کسی به ترمز اتومبیل و نقش حیاتی آن توجه نشان می داد .

با ورق زدن برگهای تاریخ صنعت اتومبیل سازی و توقف در سال 1885 به زمانی می رسیم که کارل بنز برای نخستین بار از لنتهای ترمز چوبی و دیسکها یا صفحه های تسمه ای برای متوقف کردن اتومبیل های ساخت خود ، استفاده کرد کارل بنز این ایده را دقیقا ً از روی قطارها یا لوکوموتیوهای آن زمان کپی کرده بود بتدریج راه حلهای دیگری برای توقف اتومبیل توسط مبتکرین در این زمینه بکار بسته شد مثلا ً ترمزهای دایملر که شامل یک کابل فولادی بود و به دور یک صفحه فلزی در قسمت درونی چرخ پیچیده شده بود و در زمانی که این کابل کشیده می شد پس از مدتی وسیله نقلیه را مجبور به توقف می کرد ولی یکی از بزرگترین معایب اینگونه ترمزها این بود که در زمانی که راننده اتومبیل خود را در سر بالایی متوقف می کرد درست پس از توقف ، از فشار این کابل کاسته و خودرو به طرف عقب کشیده می شد بعدها راه حلی برای این مشکل پیدا شد و آن راه حل این بود که به وسیله یک اهرم بلند نیزه مانند که با بازوهای کششی در قسمت پشت اتومبیل در ارتباط بود درست در لحظه پس زدن خودرو این اهرم نیزه مانند به درون زمین فرو می رفت و اتومبیل را در سر بالایی متوقف می کرد .

پیش از پایان قرن هجدهم فکر ساختن ترمزهای مؤثرتر وارد فازهای جدی تری شد و در سال 1895 " فردریک لانکستر " انگلیسی نوعی ترمز کلاچ مانند را برای متوقف کردن اتومبیل بکار برد ساختار این ترمز بدینگونه بود که یک کلاچ مخروطی شکل که دارای یک صفحه سایشی (اصطکاکی ) در پشت بود وظیفه برقراری ارتباط بین موتور و جعبه دنده را بعهده داشت در زمانی که این کلاچ بطرف عقب کشیده می شد ارتباط موتور وجعبه دنده با یکدیگر قطع می شد و هنگامی که بیشتر به طرف عقب کشیده می شد از طریق صفحه سایشی خود با یک دیسک مرتبط شده و اتومبیل را بحالت ایست وا می داشت بدین ترتیب می توان گفت که ترمز گیری در تمام خودروها از طریق دستگاه انتقال قدرت صورت
می گرفت و این شروعی بود برای ترمزهای دیسکی .

بکارگیری سیستمهای انتقال قدرت ترمز به شیوه هیدرولیکی در گذشته تنها در دوچرخه ها کاربرد داشت و در سال 1897 دو نفر بنامهای Bayley و Brigg نخستین سیستم هیدرولیکی را برای وسائط نقلیه چهار چرخ ساخته و مورد بهره برداری قرار دادند در این سیستم فعالیت ترمزها با استفاده از نیروی فنر و عقب نشینی آنها بطریق هیدرولیک انجام می گرفت در سال 1897 آقای Herbert frood فعالیتهای خود را بیشتر بر روی مواد تشکیل دهنده آن چیزی که ما امروز آنرا لنتهای ترمز می نامیم قرار داد .

وی در سال 1902 موفق به گشایش شرکتی به نام Frodo گردید و در سال 1908 نخستین نمونه از لنت ترمزهای خود را که از ماده ای مقاوم به نام آزبست ساخته شده بود آماده فروش به خریداران نمود اینگونه لنتها تا سال 1921 مورد بهینه سازی قرار گرفتند و در این سال با استفاده از فن آوری ریخته گری از قیمتی ارزانتر از گذشته برخوردار گردیدند شاید ساخت لنتهای ترمز از Asbest که ماده ای مقاوم در برابر گرما است یک تحول اساسی در ساخت لنتهای ترمز باشد چرا که تا پیش از این زمان تنها از فلز در مقابل فلز ( دیسک و لنت ) استفاده می شد و شرکت بوگاتی نیز استفاده از فلز در برابر فلز را تا اواسط قرن بیستم همچنان مورد استفاده قرار می داد .

تاریخ تولید ترمزهای دیسکی به سال 1896 باز می گردد در این سال شرکت union electicitats gesellscaft با ساخت دیسکهای الکترومغناطیسی مجهز به یک صفحه فرسایشی نخستین گام را در این جهت برداشت طرز کار این سیستم بدین ترتیب بود که لنتهای ترمز با نیروی الکترومغناطیسی بطرف صفحه یا دیسک گردان فشرده و فشار لازم را برای توقف اتومبیل به دیسک ترمز وارد می آورند در سال 1901 آقای می باخ موفق به ساخت نوعی ترمز کاسه ای مجهز به لنتهای داخلی گردید این ترمزها در سال 1903 بر روی مرسدسهایی که دارای 40 اسب بخار نیز بودند مصرف گردید در همین سال کمپانی مرسدس نصب ترمز بر روی چرخهای جلو را نیز به عنوان وسایل اضافی و سفارشی به خریداران خود پیشنهاد می کرد .

ولی هیچگاه از این وسیله سفارشی استقبال در خور توجهی نشد چرا که رانندگان آن زمان ترمز برای محور جلو خودرو را خطرناک می دانستند .

ترمز اتومبیل ها برای هر چه کامل تر شدن راه دور و درازی را در پیش داشتند و فکر ساختن ترمزهای هیدرولیکی و با فشار روغن نیز عده ای را به خود مشغول داشت در سال 1908 آقای E.W.Weight ترمزی را طراحی و ساخته بود که تقریبا ً چیزی بود شبیه ترمزهای امروزی یعنی استفاده از نیروی فشار روغن و هیدرولیک و بکارگیری سیلندر و پیستون برای ترمزها

بدون شک ساخت ترمزهای هیدرولیکی گام مؤثری در زمینه بهینه سازی ترمزها محسوب می شد ولی این ترمزها نیز همچنان نقص داشته و افرادی نیز در فکر ساخت ترمزهای بهتر و یا سیستمهای کامل کننده و تقویت کننده ترمزهای هیدرولیکی بودند .

در سال 1919 آقای PARRY THOMAS نقشه و امکان ساخت بوستر ترمزها را مورد بررسی قرار داده بود این بوسترها در سال 1923 متولد شده و به واقعیت پیوستند ولی هنوز می باید زمان درازی بگذرد تا این سیستم های تقویت کننده عادی و بصورت استاندارد در آیند .

در سال 1940 شرکت گیرلینگ برای خودروهای نظامی ترمزهای دیسکی طراحی و تولید نمود این ترمزها شباهت زیادی با صفحه کلاچ های امروزی داشته یعنی دارای دو پوشش سایشی در دو طرف دیسک بودند .

سیستم ترمزهای هیدرولیکی همانگونه که می دانیم یکی از بهترین و مطمئن ترین ها است ولی اغلب این سیستم به صورت نخستین خود ( تک کاناله ) دارای عیب بزرگی بود بدین ترتیب که اگر هر گاه بدلیلی شکستگی جزئی در یکی از لوله های ترمز بوجود می آمد در اثر نشت مایع و یا ترمز و یا وارد شدن هوا در سیستم کلی ، تمام سیستم ترمز از حالت فعالیت خود بیرون آمده و خطر آفرین می شد.

برای از میان برداشتن این عیب ، خودروسازان و یا شرکتهای تولید کننده سیستمهای ترمز مجبور به تقسیم کردن نیروی ترمز در دو مدار یا کانال جداگانه بودند بدین ترتیب که نیروی ترمز ( از طریق فشار هیدرولیک ) به دو بخش یکی برای چرخهای جلو و دیگری برای چرخهای عقب تقسیم شدند .

پیشرفت و بهینه سازی سیستم ترمز اتومبیل ها با سرعتی نه چندان سریع صورت گرفته است و خوشبختانه امروزه ترمزهای سه و چهار کاناله ضد بلوکه ABS در بیشتر اتومبیلها بصورت استاندارد وجود ندارد حال ما در این پروژه قصد داریم به بررسی قسمتهای مختلف ترمز ABS و معمولی بپردازیم و سپس در پایان این دو سیستم ترمز را با یکدیگر مقایسه کنیم .

فصل اول :

تجزیه سیستم های ترمز هیدرولیکی

1-1- ترمزهای هیدرولیکی بدون تقویت کننده :

تنها نیرویی که در ترمزهای بدون تقویت کننده برای فشار دادن کفشک روی ترمز مورد استفاده قرار می گیرد نیروی پای راننده روی پدال ترمز است هیچ منبع انرژی دیگری مورد استفاده قرار نمی گیرد اینگونه ترمزها معمولا ً برای ماشینهای سبک تر و کوچکتر مورد استفاده قرار می گیرد نیرویی که بر پدال وارد می شود موجب جابجایی پدال می شود که در نتیجه آن میل انگشتی روی سیلندر اصلی فشار وارد می کند این اتصال پدال به این خاطر تعبیه شده است تا با ایجاد نیروی مکانیکی بین پدال و سینلدر اصلی ، پیستون سیلندر اصلی حرکت کند مساحت سطح مقطع سیلندر ترمز چرخ بیشتر از مساحت سطح مقطع سیلندر اصلی می باشد از آنجایی که میزان حرکت پیستون سیلندر اصلی با توجه به میزان حرکت پدال تعیین می شود پس رابطه بین سیلندر اصلی و سیلندر ترمز چرخ نیز محدود می شود به منظور حفظ نیروی پای راننده روی پدال کمتر از حد ماکزیمم که حدودا ً N445 (lb100) می باشد تقویت کننده ترمز که به صورت خلاء یا پمپهای فشار هستند تعبیه شده اند .

(PI) خط فشار ترمز هیدرولیک که توسط فشار پای راننده روی پدال () تولید می شود را می توان به شکل زیر محاسبه کرد :

(1-1)

که در این فرمول داریم :

Amc = مساحت سطح مقطع سیلندر اصلی ،

= نیروی پای راننده روی پدال و (lb)N

= نسبت بازوی پدال

= بازده بازوی پدال

میزان معمول بازده بازوی پدال 8/0 می باشد که شامل بازده سیلندرهای اصلی به فنر بازگرداننده می باشد .

نیروی ترمز () را برای هر اکسل با توجه به عوامل ترمز بصورت زیر محاسبه می کنیم .

(1-2)

که خواهیم داشت :

= مساحت سینلدر ترمز چرخ

BF = عوامل ترمزی

= فشار بر روی پدال که برای متصل کردن کفشکهای ترمز به ترمز کفشکی یا ترمز دیسکی نیاز است

R = شعاع لاستیکها ( چرخ ماشین ) (in)mm

r = شعاع مؤثر ترمز دیسکی یا کفشکی (in)mm

= بازده سیلندر ترمز چرخ

نیروی فشار جلویی که برای ترمزهای دیسکی در یک شرایط خوب مکانیکی استعمال می شود کمتر از 5/3 الی 5/7 برابر با (sto 10 psi) می باشد و حتی در برخی مواقع ممکن است اصلا ً به حساب نیاید فک ترمز شناور ترمزهای دیسکی که سطح کشویی آنها زنگ زده اند ممکن است نیروی فشار به جلوی بیشتری نیاز داشته باشند نیروی فشار به جلو در ترمزهای کفشکی با توجه به نیروی فنرهای بازگرداننده کفشکهای ترمز و با مساحت سیلندر ترمز چرخ محاسبه می شود که ممکن است تا حدود 70 الی 172 که برابر است با (psi250 الی 100 ) بشود بازده سیلندر ترمز چرخ تقریبا ً 96/0 در ترمزهای کفشکی و 98/0 در ترمزهای دیسکی می باشد .

کاهش سرعت در چرخهای باز از جمع برآیند نیروی ترمز تمام اکسلها محاسبه می شود و یا

(1-3)

R و F که در ترمز دیده می شود مبین این امر است که پارامترهای ترمزهای چرخها که عبارتند از : و BF و r باید برای ترمز چرخهای جلویی (F) و عقبی (R) محاسبه شوند اگر برای ترمز گرفتن بیش از دو اکسل مورد استقاده قرار بگیرند آنگاه پارامترهای جدیدی به سمت راست معادله (1-3) اضافه می شود .

برای ماشینهایی که سوپاپ تنظیم دارند خط فشار ترمزهای عقبی و جلویی برای فشار بالای نقطه زانو یکسان نیست برای محاسبه خط فشار ترمزهای عقب و جلو می توانید از فرمول (1-11) استفاده نمایید .

1-2- تجزیه سیستم تقویت کننده

1-2-1- نگاهی کلی

سیستم های تقویت ترمز این امکان را به یک راننده معمولی ( از لحاظ هیکل) می دهد تا فقط با فشاری که روی پدال وارد می آورد پدال حرکت کند تقویت کننده ها و فاکتورهای مختلف آن باید با توجه به وسیله نقلیه موتوری باشند .

موارد زیر باید در نصب تقویت کننده های ترمزی مورد توجه قرار بگیرد .

1- تقویت کننده ها باید به اندازه کافی حساس باشند تا در مواقعی که فشار کمی روی پدال وارد می شوند بتوانند به خوبی اعمال ترمز را تنظیم کنند ( سطوحی که سطح مالش کمی دارند ) وقتی فشار وارده روی پدال ترمز کمتر از 13 تا 20 N( lb5 الی 3 ) باشد تقویت کننده های ترمز باید مورد استفاده قرار بگیرند .

2- میزان فشار وارده بر پدال و کاهش سرعت باید به نحوی باشند که شخص قادر به تخمین زدن خشکی ترمز ها باشد .

3- زمانی که تقویت کننده ها برای عمل کردن نیاز دارند باید کمتر از 1/0 ثانیه باشند تا در مواقعی که با حرکت (Ft/s 3) m/s1 پدال ترمز به یک ترمز فوری داریم ترمزها به موقع عمل کنند .

4- انتقال نیرو از تقویت کننده ها به ترمزهای بدون تقویت کننده باید به نحوی باشد که شخص قادر باشد در مواقع ضروری تا جائیکه نیاز دارند روی پدال ترمز فشار بیشتری وارد کند .

5- درصد اطمینان تقویت کننده باید بالا باشد تا احتمال عدم عملکرد صحیح آنها کاهش یابد عدم کارکرد تقویت کننده باعث دستپاچگی راننده خواهد شد و ممکن است شخص بر اثر سردرگمی در مواقع ضروری پایش را از روی پدال بردارد .

وقتی که بر اثر عدم عملکرد تقویت کننده ها پدالها به سختی حرکت می کنند برخی رانندگان اینگونه تصور می کنند که کل سیستم ترمز ماشین دچار نقص شده و سرعت ماشین به حدی که مورد نیاز است کاسته نخواهد شد .

1-2-2- ترمز بوستردار( ترمزهای تقویت شده با خلاء) :

ترمزهای هیدرولیکی تقویت شده با خلاء که به آنها ترمز بوستردار نیز می گویند از یک تقویت کننده خلائی به طوری که در تصویر 1-1 آمده ، استفاده می کنند تا به راننده با افزایش نیرو برای چسباندن کفشکهای ترمزی در ترمز کفشکی کمک کنند سیستم معمولی ، که به آنها mastervac نیز می گویند دقیقا ً روی دیواره جداکننده موتور از اتاق سرنشین ، جلوی پای راننده بالا می روند این سیستم ها بین پدال پایی و سیلندر اصلی بالا می رود .

نیروی کمکی نیروی فشار به جلو را ، که پیستون سیلندر اصلی را فعال می کند افزایش می دهد با تغییر فشار در پیستون تقویت کننده و یا دیافراگم خلاء و یا فشار کم در قسمت سیلندر اصلی ایجاد می شود . ( همچنین توسط فشار بالا یا اتمسفر یک در بخش ورودی نیز ، تولید می شود .

میزان نیروی کمکی با توجه به میزان نیروی وارده روی پدال ترمز توسط دیسک واکنشی که در تصویر 1-2 نشان داده شده است تنظیم می شود قسمت مالشی دیسک واکنشی مانند مایع روغنی عمل می کند که تولید فشاری برابر روی تمام سطوحی که با آن در تماس هستند می کند نتیجه این است که میزان ورودی فشار جوی با توجه به میزان فشار به جلوی تنظیم شده روی پیستون سیلندر اصلی تنظیم می شود .

خلایی که در مجرای مکش ورودی موتورهای اشتعال جرقه ای وجود دارند عموما ً برای فعال کردن بوسترها ( تقویت کننده ) کاملا ً کافی می باشد موتورهای دیزل به خاطر کافی نبودن خلاء مجرای مکش آنها که ناشی از عدم وجود یک گلوگاه می باشد نیاز به یک پمپ خلاء دیگر دارند پمپهای خلاء به سه شکل پرده ای ، دیافراگمی و پیستونی هستند پمپ خلاء های مدل پرده ای برای تولید خلاء مورد نیاز ، نیازمند موتور دیزل روغنی می باشند با توجه به میزان کمک دهی محدود ، معمولا ً در سیلندرهای اصلی که حداکثر حجم آنها 6/24 می باشند مورد استفاده قرار می گیرند .

شکل 1-1- سیلندر اصلی بوستر خلاء (Bendix )

1-2-2-a- تجزیه تقویت کننده خلائی مدل Mastervac :

ضریب تقویت کنندگی سیستم با توجه به ضریب نیروی فشار به جلو بر پیستون سیلندر اصلی با در نظر گرفتن فشاری که از طریق پدال بر تقویت کننده وارد می شود محاسبه می گردد .

(1-4)

که در فرمول فوق برابر است با نیروی تقویت کننده بر حسب N(lb)

تقویت کننده های خلائی میزان کارآیی سیستم ترمز را در ماشینهای سنگین حدود هشت تا نه برابر و در ماشینهای کوچکتر سه تا چهار برابر افزایش می دهند بدین معنی که مثلا ً نیروی وارد بر پدال هشت برابر می شود اگر چه این میزان تقویت کننده باعث کارآیی بالای ترمز با فشار اندکی که روی پدال وارد می آورد می شود اما در مواقعی که تقویت کننده عمل نکند معمولا ً راننده قادر به وارد آوردن فشار لازم روی پدال برای کاهش مورد نظر وسیله نقلیه نخواهد بود .]3[

خط فشار ترمز توسط معادله ای تقریبا ً مشابه معادله (1-1) محاسبه می شود فقط این محاسبه بر اساس ضریب تقویت کنندگی (B) می باشد .

ضریب تقویت کنندگی را می توان با ابعاد اولیه و پایه و نیروی فنرهایی که در mastervac پایه مورد استفاده قرار می گیرند (تصویر 1-2 ) محاسبه نمود .

شکل 1-2- یک دیافراگم متسروک Bendix

در این محاسبه قطر خارجی دیسک واکنشی را با و قطر پیستون واکنشی را با نشان می دهیم در محاسباتی که در زیرانجام شده است برای یک mastervac یک دیافراگم پیستون دار با قطر mm203 می باشد قطر دیسکهای واکنشی و پیستون واکنشی mm7/30 و mm18 (in729/0 و in21/1 ) می باشد .

که قطر نیروی فشار به جلو mm38/8 و Acm83/0 (in33/0) در نظر گرفته شده بود .

نیروی تقویت کننده برای یک خلاء مؤثر 928/7 (psi5/11 ) ]80% از حداکثر [ و بازدهی مکانیکی 95/0 عبارت است از :

نیروی مؤثر تقویت کننده به خاطر نیروی مقاوم فنرهای بازگرداننده پیستون دیافراگم کمتر می شود بنابراین :

که نیروی فنر بازگرداننده فرض شده است این محاسبات نشان می دهد که بخش تقویت کننده تولید نیروی فشار به جلوی هیدرولیکی به میزان (5101b)2269N می کند .

نیروی مقاومی که در برابر این نیروی فشار به جلو ایجاد می شود بعدها محاسبه خواهد شد دیسک واکنشی لاستیکی مانند یک مایع روغنی عمل می کند فشار دیسکی واکنشی برابراست با نیروی مؤثر تقویت کننده تقسیم بر تفاضل مساحت سطح مقطع دیسک واکنشی و پیستون واکنشی :

فشار کنترل بر هر سطحی که با دیسک واکنشی درتماس باشد نیروی مقاوم وارد می کند به دلیل آنکه نیروی پیستون واکنشی به قسمتی از دیسک واکنشی داده می شود نیروی پیستون واکنشی که برابر است با فشار واکنشی ضرب در مساحت پیستون واکنشی ، بنابراین ؛

نیروی پیستون واکنشی در مقابل نیروی فنرهای بازگرداننده پیستون واکنشی مقاومت می کند برای یک تقویت کنده خلاء با قطر نیروی فنر بازگرداننده تقریبا ً (151b)66.7N می باشد نتیجتا ً نیرویی که توسط پدال بر پیستون فشار به جلوی سیلندر اصلی وارد می شود برابر است با :

1298+66.1=1364N(290.7+15=305.71b)

مجموع نیروی وارده بر پیستون سیلندر اصلی و در نتیجه نیروی تولید شده از فشار خط ترمز برابر است با مجموع نیروی مؤثر بوستر و نیروی پیستون واکنشی یا

2277+1298=3575N(5102+290.7=800.91b)

در آخر نسبت تقویت کننده خلائی (B) توسط نسبت نیروی میله انگشتی وارده بر پیستون سیلندر اصلی تقسیم بر نیروی پیستون واکنشی محاسبه می شود .

B=575 / 1298 = 2/75

[B=800/9/290/7=2/75]


بررسی خواص و کاربردهای PVC

به نظر می رسد بومن نخستین کشی بدول پلی وینیل کلریدرا در سال 1872 تولید و تکزارش کزو، براساس گزارش بومن وقتی وینیل کلریه در معرض نور خورشید قرار می گیرد جامعه سفید رنگی به دست می آید که گرانی ویژه‌ی آن 14D6 است و تا 13De نیز تجزیه نمی شود در سال 1929 پلیمر شدی گرمایی وینیل کلریه که با پروکسید آغاز شده بدو، توسط و یک هازرگزارش شد و در سالهای 1937 –
دسته بندی مواد و متالوژی
فرمت فایل doc
حجم فایل 16 کیلو بایت
تعداد صفحات فایل 20
بررسی خواص و کاربردهای PVC

فروشنده فایل

کد کاربری 8044

خواص و کاربردهای PVC

به نظر می رسد بومن نخستین کشی بدول پلی وینیل کلریدرا در سال 1872 تولید و تکزارش کزو، براساس گزارش بومن وقتی وینیل کلریه در معرض نور خورشید قرار می گیرد جامعه سفید رنگی به دست می آید که گرانی ویژه‌ی آن 1.4D6 است و تا 13De نیز تجزیه نمی شود. در سال 1929 پلیمر شدی گرمایی وینیل کلریه که با پروکسید آغاز شده بدو، توسط و یک هازرگزارش شد و در سالهای 1937 – 1939 تولید انبوه آن صورت گرفت.

هر چند که وینیل کلر ید گازی با نقطه جوش 1400 است، اما در سال های 40 تا cْ 60 فشار اضافی آن در ظروف آیینه‌ی شده مشکلی ایجاد نمی کند. با وجود این هنگام کار وریک سیستم ثبت باید به وقت عمل کرد. تولید تجاری پلی وینیل کریه (PVC) و کد پلیمرهای آن بازنگری شده و مهم عمده‌ی رزین های PVC حدود 20%) در ایالات متحده‌ی آمریکا با روش پلیمر رمی تعلیفی، حدود 20% با روش های امولسیونی و تنها مقدار کمی از پلیمرهای ویژه در محلول ساخته می شوند.

اندازه‌ی امولسیونی و تنها مقدار کمی از پلیمرهای ویژه در محلول ساخته می شوند.

اندازه‌ی ذرات رزین های تعلیقی در مقایسه با نوع امولسیونی بزرگتر است (50 تا 500 میگروی در مقیاسه با D.1 تا 1.D میکروی) و معمولا به گونه ای طراحی می شود تا سطحی متخلخل و کنگره ای داشته باشند در نتیجه میزان جذب نرم کننده بر روی آنها برای تشکیل مخلوط های خشک در عملیات متفاوت روزی رانی و نورد کاری افزایش می یابد یا برعکس ذرات رزین امولسیون معمولا کره های سختی هستند که سطح آنها دست کم دارای قسمتی از امولسیون کننده‌ی موجود و در فرآیند پلیمر شدی است. چنین رزین ها یی را می توان در نرم کننده ها پخش کرد و شل های پلاستیکی یا خمیرهایی بدست آوردة سپس با گرم کردن آنها ترکیب رزین – نرم کننده حالت ژل پیدا کرده و شرایط نهایی خود را به دست می آورد.

PVC در منوم خود حل نمی شود و لذا در پلیمر شدن تعلیقی یا توده ای، PVC به محض تشکیل رسوب می کند و از این جهت شبیه آکریلونیتریل است هر چند پلیمر شدن امولسیونی وینیل کلریه، بسیاری از ویژگی های سیستم های امولسیونی را مانند آغاز گر انحلال پذیر در آب، تشکیل شیرابه پلیمر) داراست اما در ب رخی از جنبه های مهم از لحاظ نظری و از لحاظ آنچه که در سیستم های امولسیونی ضمن پلیمر انحلال پذیر در منوم مشاهده می شود با آن تفاوت دارد. به هر حال حضور پلیمر رسوب شده در سیستم های توده ای ( یا تعلیقی) و امولسیون، موجب افزایش سرعت پلیمر شدن مندم باقیمانده می شود و احتمالاً به این علت است که رادیکال ها در سطح جامد به وام افتاده و در نتیجه از بعضی واکنش های پایانی معمولی دور می مانند همچنین انتقال زنجیر به منوم به میزان نسبتاً زیادی رخ می دهد یا در نتیجه بر خلاف آستیری و قدیل متاکریلات، وزن ملکولی،بیشتر تحت تأثیر غلظت منومر است تا تغییر غلظت کاتالیزور استیرن و متیل متاکلریلات بیشتر از سینتیک پلیمر شدن رادیکالی پیروی می کنند، اعتقاد بر این است که انتقال به منموگروه انتهای سیر نشده ای ایجاد می کند که در اثر فعالسازی اکلیلی کلر موجب بروز بعضی ناپایداریهای گرمایی در PVC می شود. ( شکل ص 222)

کلرید نوع سوم که از شاخه ای شدن زنجیر اصلی ناشی می شود نیز ممکن است به بروز ناپایداری گرمایی کمک کند. در این حالت با حذف پی در پی HCL، سیستم وی انتهای مزرودچ ایجاد می شود و هنگامی که توان پیوندهای دوگانه به هفت برسد علائم تخریب PVC ظاهر می شود تا به صورت رنگهای زرد- قهوه ای- سیاه بروز می کند. روشن است که کلریدها ( یا هیدروژنهای اکیلی نوع سوم، نقاطی برای آغاز حذف گرمای Hcl هستند و اگر در نظر بگیریم که تعداد زیادی ساختار معمولی سر به دم در PVC وجود دارد آنگاه حذف هر Hd یک سیستم اکیلی دیگر ایجاد می کند. سیستم های پایدار کننده‌ی بسیاری برای مبارزه با تخریب PVC وجود دارند که پر مصرف ترین آنها صابون های فلزی سنگین ( مانند بارم و کادمیم اکتوئات) و نمک های سرب یا ترکیبات قلع به ویژه‌ دی اکلیل قلع دارای اتصالات SnS ( ماند (BuSn[SCHCOCH هستند. این ترکیبات قلع از نوع اعلا بوده و بیشترین موارد مصرف خود را در PVC سخت ( بدون نرم کننده) یافته اند در PVC سخت شامل تخریب بسیار حاد است پلیمر شدن تعلیقی وینیل کلرید

به یک بطری نوشابه یک چارکی 200nl آب مقطر هوازدایی شده ، 0.3 گرم قدیل سلولز به عنوان عامل معلق ساز و 0.3 گرم لاروفیل پرکسید اضافه کنید. این مواد را منجمد کروه و با نیتروژن برویید. وینیل کلرید مایع به مقدار اضافی ( حدود 105 گرم) را از درون استوانه‌ی حاوی پتاسیم هیدروکسید که نقش تغییر کننده دارد، بگذرانید و درون استوانه درجی که با یخ خشک خنک شده و در چگالنده یخ خشک قرار دارد، جمع آوری کنید همه در 115 ml از آن را جمع آوری کرده و به محتوای بطری که به دمای اتفاق رسیده است، بیفزایید هنگامی که مقدار اضافی وینیل کلرید تقطیر شد (100گرم از آن در ظرف باقی ماند) در بطری را باورپوش سوراخدار فولادی، درپوش غشایی نئوپری و لایه‌ی وردنی نازک پلی اتیلن آیتیه‌ی کنید محتوای بطری را در 50cc به مدت 24 ساعت به هم بزنید احتیاط :‌در این دما بطری که دارای فشار 80-90p.si است، باید از حفاظ خوبی برخوردار باشد). پس از خنک شدن بطری، با تعبیه یک سوراخ در غشای لاستیکی درپوش به کمک سوزیر تزریقات، فشار باقیمانده را آزاد سازید. ذرات درشت پلی ویتیل کلرید را روی صافی جمع کنید و در یک مخلوط کن با شسته و در دمای cc 50 در خلأ خشک کنید. با این روش باید 80 گرم پلیمر با گرانروی درونی حدود 1.0 (0.5 گرم در 100 ml سیکل مگزاندن، 30cc به دست آورید.

پلیمر شمش امولسینی وینیل کلرید

یک بطری نوشابه کوچک ( با گنجایش حدود 220 ml) را با فشار نیتروژن پاکسازی کرده و در آن 0.25 گرم پتاسییم پرسولفات و 85 ml محلول آبی 0.5 درصد یک شوینده آنیونی مانند سدیم لاریل سولفات ( مانند دوپونل (C بریزید محلول آبی را با استفاده از آب هوازدایی شده تهیه کنید. ( برای هوازدایی آب) در آن نیتروژن وارد کنید یا آن را بجوشانید و در فضای نیتروژن یا کربن دی اکسید یعنی ا فزایش یخ خشک خنک کنید). با حفظ فضای نیتروژن، محتویات بطری در یخ خشک منجمد می شود و مانند آزمایش قبل 27 تا 29 گرم وینیل کلرید مایع به محتویات بطری بیفزایید اجازه دهید منومر تبخیر شود آنجا که تنها 25 گرم از آن در بطری باقی بماند یا سپس در بطری را بوسیله‌ی درپوش غشایی تئوپری و درپوش تاجی سوراخدار آببندی کنید. اگر مانند این مورد نمی خواهید چیز دیگری به بطری اضافه کنید، توصیه‌ می شود یک فیلم نازک پلی اتیلن را در زیر درپوش قرار دهید تا از ورود هرگونه آلودگی به سیستم جلوگیری شود.

بطری را در دمای 50cc به مدت 5 تا 7 ساعت بچرخانید یا هم بزنید یا در نتیجه ؟؟ و آبی رنگ بدست می آید پس از خنک کردن و خارج کردن گازی که می تواند تنها مقدار کمی از منومر باقیمانده باشد با ا فزودن 50ml محلول غلیظ سدیم کلرید، امولسیون را لخته کنید. پلیمر را صاف کنید و در بار با آب و یکبار با متانول بشویید و بعد در دمای 50cc در خلا خشک کنید میزان تبدیل منومر 90% یا بیشتر بوده و گرانروی درونی پلیمر ( درسیکلوهگزاندی، 0.5 گرم پلیمر به ازای 100ml حلال 30cc) حدود 0.9 1.0 است علاوه بر لخته ای شدن که هنگام صاف کروی مشکلاتی به همراه وارد شیرابه را میتوانید آنقدر تبخیر کنید تا کاملاً خشک شود و به همان صورت استفاده کنید. این عمل باروش تجارتی معمول که همانا خشک کرون افشانه ای شیرابه های PVC است، مطابقت وارده در این حالت عامل امولسیون ساز، روی سطح وزات ریز مجزا وجود دارد. حضور صابون موجب پایداری گرمایی کمتر و خواص الکتریکی ضعیفتر PVC امولسیونی، در مقایسه با PVC تعلیقی می شود.

معرف وفااکلا تأثیر انواع عوامل فعال سازی بر پلیمر شدن امولسیون ویتیل کلرید را مطالعه و بررسی کردن آنها سرعت پلیمر شدت تبدیل و خواص پلیمر را به ساختار امولسیون ساز ارتباط فراونده امولسیدی سازی که وریتال اخیر مورد استفاده قرار گرفت عموماً مؤثرترین نوع آن است، بیش از نیمی از تولید PVC، برای ایجاد انعطاف پذیری، در ترکیب با نرم کننده ها مصرف می شود. بسته به نوع و مقدار نرم کننده‌ی به کار رفته، کارایی های مکانیکی متعددی حاصل می گردد. نرم کننده های معمولا نوعی پلی استرقسمت مهمی از علوم و تکنولوژی پلیمر را تشکیل می دهند. تهیه ورقه PVC انعطاف پذیر و شفاف

صد گرم PVC معمولی چند منظوره با وزن ملکولی بالا از درون ظرف اختلاط مناسبی بریزید چهل و پنج گرم دی اکتیل فتالات، 5 گرم روغن سویای اپوکسید شده مانند ترونکلس 2-E54 گرم پایدار کننده‌ی باریم تعمیم مانند مارک ll از شرکت شیمیایی آرگوس) را به زرین بیفزایید، این مواد را تا آنجا که از نظر چسبندگی مانند ماسه خیس خورده شوند، به هم بزنید و مخلوط کنید. این ترکیب را روی آسیاب دو غلتکی ویژه‌ی کار با پلاستیک ها با ابعاد غلتک 16inx12in بریزید. دمای غلتک ها باید 35 of وفاصله‌ی بین آنها 0.03 in باشد. ترکیب را به مدت 5 دقیقه و در حالت روان مخلوط کرده و سپس به صورت ورقه از دستگاه خارج کنید و بگذارید تا سرد شود ورقه های تجاری PVC با استفاده از PVC چند منظوره و بوسیله‌ی غلتک رانهایی چهار تایی و روزی ران های ویژه‌ی کار با پلاستیکها تهیه می شوند.

روزی ران های ویژه‌ی کار با پلاستیکها تهیه می شوند.

پیرایش های معینی که بر روی کوپلمرهای PVC صورت گرفته است، در مقایسه با مهمترین پیرایش های صورت گرفته بر روی وینیل استات از اهمیت تجاری بیشتری برخوردار است مزیت کوپلمرهای PVC در مقایسه با جور- پلیمرهای آن، کارایی فوق العاده در زمینه‌ی کابردهای ویژه ای مانند ساخت کفپوش و صفحه های گرامافون است.

تهیه پلی ویتیل کلرید تیلورپذیر

یک بالن یادی زرین 2 لیتری چهار دهانه را به ؟؟، بازولتی یخ خشک، ورودی نیتروژن دماسنج قیمت چکاننده برای افزودن کاتالیزور معجزه کننده ظرف را با نتیروژن ، در حدود یک ساعت کاملاً پاکسازی کرده و در یخ خشک – متانول تا cْ 40- مروکینیه، پس از خارچ کروی باز دارنده‌ی فنول از منومر وینیل کلرید توسط تقطیر با عبور از جاذب مناسب ( مانند دانه های (KON، 800 گرم از آن در واکنشگاه متراکم ( مایع) بکنید. 20 گرم از محلول 50% تری بوتیل بورای در هگزای را طی 5 دقیقه اضافه کرده و سپس 1.5 گرم محلول 1% هیدروژن پروکسید در متانول را در مدت 4 ساعت به صورت قطره قطره بیفزایید ( توجه : اکلیل بورانی به دقت جابجا کنید زیرا در تماس با هوا آتش می گیرد) بعد از گذشت 30 دقیقه دیگر 3 هیردوکسیدی در 50ml متانول را به منظور غیر فعال کروی کاتالیزور باقیمانده اضافه کنید.

صبر کنید مخلوط تا دمای اتاق گرم شود و وینیل کلرید واکنش نداده تقطیر خارج گردد با افزودن متانول، تا آنجا که جایگزین منومر مایع شود پلیمر را به حالت دوغاب نگهدارید سرانجام پلیمر را صاف کردند آن را به کمک متانول جوشان در استخراج کننده و به مدت 6 ساعت استخراج کنید؛ سپس آن را به مدت یک شب در فضای نیتروژن در آوی خلأ در دمای cْ 60 خشک کنید حدود 160 گرم محصول با گرانروی درونی حدود 1.4 در سیکلوهگزاندی 0.21 به ازای 100ml در cْ 25 )‌بدست می آید.


بررسی کاربرد GPS

بشر از گذشته های دور برای گم نکردن مسیر خود در سفرها به دنبال علامت و نشانه‌هایی از قبیل خورشید و ستاره ها و غیره بوده است
دسته بندی نقشه برداری
فرمت فایل doc
حجم فایل 37 کیلو بایت
تعداد صفحات فایل 61
بررسی کاربرد GPS

فروشنده فایل

کد کاربری 8044

کاربرد GPS
فصل اول

مقدمه

بشر از گذشته های دور برای گم نکردن مسیر خود در سفرها به دنبال علامت و نشانه‌هایی از قبیل خورشید و ستاره ها و غیره بوده است.

که با رشد تکنولوژی، با اختراع هواپیماها و کشتی های اقیانوس پیما و موشکهای برد کوتاه و برد بلند و سایر ادوات دیگر وسایل قدیمی حتی قطب نما نیز دیگر برای این کار مناسب نبود. از این رو یکی از راههای تعیین مسیر و موقعیت مکانی استفاده از داده های ماهواره های GPS می باشد. این سیستم در تمام طول شبانه روز و تحت تمام شرایط آب وهوایی در خدمت کاربران واقع در تمام نقاط سطح کره زمین می باشد. از آنجا که گیرنده های GPS به صورت پسیو کار می کنند هیچ محدودیتی از نظر تعداد کاربران ندارند. GPS در هر نقطه جهان و در هر زمان به سه پرسش زمان- مکان و سرعت پاسخ دقیق و ارزان می دهد. برای انجام این عمل ماهواره ها همواره مشغول ارسال سیگنالهایی شامل کدهای فاصله سنجی و نیز پیام ناوبری برای کاربران هستند. کدهای فاصله سنجی گیرنده‌های GPS را قادر می سازد تا زمان انتشار سیگنال را اندازه بگیرد و بدین وسیله با توجه به معلوم بودن سرعت انتشار امواج الکترومغناطیسی فاصله بین کاربر تا ماهواره ها معلوم می شود. پیام داده های ناوبری گیرنده را قادر می سازد تا مکان هر کدام از ماهواره‌ها را در لحظه ارسال سیگنال محاسبه کند. سپس گیرنده با استفاده از این اطلاعات موقعیت خود را بدست می آورد.


فصل دوم

سیستمهای ناوبری

2-1- تعریف ناوبری (Navigation)

به طور خلاصه می توان گفت هدف از ناوبری یک هواپیمای بدون سرنشین هدایت هواپیما از یک نقطه مبدا به یک نقطه مقصد است به منظور هدایت هواپیما، خلبان در ایستگاه زمینی نیاز به اطلاعات مختلفی دارد، از جمله جهت هواپیما نسبت به شمال جغرافیایی، فاصله تا مقصد، طول و عرض جغرافیایی و زمان رسیدن به مقصد.

به منظور دستیابی به این اطلاعات با کمترین خطا چاره ای جز طراحی یک Link رادیویی وجود ندارد. در قسمت بعد انواع سیستمهای رادیویی از حدوداً جنگ جهانی دوم تا این اواخر که بشر آنها را طراحی کرده آورده شده است.

2-2- انواع سیستم های ناوبری رادیویی

2-2-1- OMEGA

این سیستم ناوبری با برد بلند می باشد که از تکنیکی موسوم به هیپربولیک (Hyperbolic) جهت تعیین مختصات هواپیما استفاده می شود. این سیستم براساس اندازه گیری تغییرات فاز روی فرکانس کار می کند فرکانس کار این سیستم
10-14KHZ می باشد و بعد از جنگ جهانی دوم هم پدید آمده است. به خاطر این که روی فرکانس پایین کار می کند تمام نقاط کور یا چاله های زمینی را پوشش می دهد. و دارای هشت ایستگاه فرستنده بر روی زمین می باشد ابتدا مصرف نظامی داشته و سپس مصارف تجاری آن نیز شروع شده است.

آخرین اطلاعات حاکی از آن است که امروزه نیز این سیستم ناوبری بصورت تمام وقت کار خود را ادامه می دهد.

اطلاعاتی که این سیستم برای خلبان فراهم می آورد عبارتند از:

1- تعیین موقعیت هواپیما به صورت مختصات طول و عرض جغرافیایی.

2- زاویه و مسافت هواپیما تا ده مقصد مختلف (Way Point)

3- مسیر واقعی پرواز (Cross Track)

4- زمان رسیدن به مقصد و سرعت هواپیما نسبت به زمین

5- اطلاعات مربوط به سمت و سرعت باد در پرواز.

2-2-2- DECGA

این سیستم نیز از تکنیک هیپربولیک (Hyperbolic) جهت تعیین مختصات هواپیما یا کشتی استفاده می کند.

ایستگاههای DECGA روی فرکانس 12-70 KHZ به صورت دائم کار می کنند ایستگاههای فرستنده زنجیروار آراسته شده اند که مرز زنجیر از یک ایستگاه اصلی (Master) با قابلیت عملکرد کنترلی و سه ایستگاه Slave که سیگنالهایشان با ایستگاه اصلی قفل فاز شده اند تشکیل شده است. این سیستم انگلیسی است و طی جنگ جهانی دوم به وجود آمده است. ابتدا جهت استفاده در کشتی ها و ناوهای جنگی طراحی و ساخته شده بود و بعدها مصارف هوایی نیز پیدا کرد.

اطلاعاتی که این سیستم در اختیار خلبان قرار می دهد عبارتند از:

1- تعیین موقعیت هواپیما به صورت مختصات طول و عرض جغرافیایی.

2- زاویه و مسافت هواپیما تا مقصد.

3- زمان رسیدن به مقصد و سرعت هواپیما نسبت به زمین.

2-2-3- LORAN : ( Lony ranye Navigation )

این سیستم دارای ایستگاههای اصلی ( Mastr ) و ثانویه ( Secondary )

است که پالسهایی با دوره تکرار 25 یا 30 در ثانیه ارسال می کنند که طول این پالسها 40 میکر ثانیه است گیرنده با دریافت این پالسها از دو ایستگاه ، موقعیت مکانی خود را به دست می آورد.

این سیستم روی فرکانس 10-14 KHZ کار می کند و تقریبا پوشش جهانی دارد.

2-2-4- ANF ( Automatic Diretion Finder )

در این روش ایستگاههای رادیویی وجود دارند که فرکانس امواج آنها 200 تا 2000 کیلو هرتز می باشد. گیرنده با گرفتن این امواج جهت آن را ؟ می دهد و انسان را به سمت آن ایستگاه هدایت می کند.

2-2-5- VOR ( VHF Omni Ranye Beo Con )

فرستنده این سیستم روی فرکانس 112 تا 9/117 مگاهرتز کار می کند. و دقت این سیستم از ADF بیشتر است. گیرنده VOR جهت خود را تا فرستنده نسبت به شمال مغناطیسی پیدا می کند.

2-2-6-GPS ( Positioniog System Global )

سیستم GPS یک سیستم تعیین موقعیت ماهواره ایی است که اطلاعات دقیق پیوسته و جهانی و سه بعدی از موقعیت و سرعت را در اختیار کاربرانی که گیرنده GPS مناسبی در اختیار داشته باشند قرار می دهد. بخش فضایی GPS شامل 24 ماهواره است که در 6 صفحه موازی با 4 ماهواره در هر مدار قرار گرفته اند.

در فصل چهارم این سمینار راجع به سیستم GPS و مبحث خطاها مفصل پرداخته خواهد شد.

2-3- محاسن ناوبری GPS به سیستمهای دیگر.

سیستم GPS به دلیل داشتن محاسن فوق العاده ای از قبیل دقت زیاد در مکان یابی و پوشش جهانی و قابلیت تعیین سرعت در سه محور و داشتن مینیمم خطای ممکن و غیره ، باعث گشته تا انتخاب اول برای هواپیماهای با سرنشین و بدون سرنشین و یا موشکهای دور برد باشد و حتی با گسترش امکانات این سیستم برای کاربران بسیاری از سیستم های ناوبری رادیویی که توضیح داده شد عملا از رده خارج شوند.


2-4- نگاهی به کاربردهای GPS :

2-4-1- کاربرد GPS/INS در هدایت هواپیماها:

در طول پرواز به خاطر عوامل و یا عوامل مختلف دیگر ممکن است ارتباط گیرنده GPS با ماهواره ها قطع گردد و یا در کار سیستم GPS اختلال ایجاد شود در این صورت لازم است جهت جلوگیری از بروز حادثه و خارج شدن هواپیما از کنترل ، سیستم ناوبری کمکی وجود داشته باشد تا هدایت هواپیما را به عهده بگیرد و این کار تا جایی صورت گیرد که هواپیما بدون مشکلی به مبدأ بازگردد . این سیستم ناوبری کمکی می تواند INS ( Intertial Navigation System ) باشد که در این سیستم از سنسورهای و جایروها و شتاب سنجهای داخلی جهت ناوبری اتوماتیک استفاده می کنند.

پس از تشخیص عدم عملکرد صحیح GPS توسط واحد کنترلی، ناوبری از طریق قطب نما انجام می گیرد و واحد کنترلی مسیر پروازی را از روی اطلاعات دریافتی از قطب نما پیدا می کند. این کار بدین صورت انجام می کیرد که در لحظه ای که GPS قطع شد نرم افزار آخرین اطلاعات و ریتکال جایرو سایر سنسورها را دارد و با توجه به اینکه آخرین اطلاعات موقعیت هواپیما در لحظه قطع GPS در حافظه قرار دارد و اطلاعات موقعیت Way Point نیز در حافظه قرار داده شده و سرعت هواپیما نیز موجود می باشد زمان لازم جهت رسیدن به اولین Way Point بدست می آید. در این زمان نرم افزار هواپیما را آنقدر اصلاح می کند تا هدینگ هواپیما در راستای مناسب قرار بگیرد و به اندازة زمان محاسبه شده در همین جهت ادامه مسیر دهد تا به اولین Way Point تا زمانی که GPS مجددا شروع به کار نماید انجام می گیرد و اگر در این مدت GPS شروع به کار نمود اطلاعات جدید دریافت شده و انحرافات بوجود آمده تا مسیر پروازی تصحیح می شود تا هواپیما بتواند مأموریت خود را انجام دهد در صورتی که هواپیما به اولین W ay Point برسدو GPS همچنان از عملکرد صحیح بازمانده باشد. هواپیما عمل Homming را انجام می دهد و این بدین معنی است که هواپیما در همان ارتفاع و به وسیله قطب نما به سمت مبدأ تغییر مسیر داده و به ایستگاه کنترل زمینی باز می گردد. لازم به توضیح است اگر در طی پرواز Homming ، GPS شروع به کار نماید هواپیما از حالت Homming خارج نشده و به پرواز در مسیر خود برای رسیدن به مبدأ ادامه می دهد.

از آنجاییکه INS بر اساس سنجش شتاب در سه راستای مختصاتی و سپس انتگرال گیری مجدد برای محاسبه موقعیت کار می کند. به دلیل این انتگرال گیری ها خطای INS جمع شونده و افزایش یابنده است. تنها می توان با به کار بردن جایروها و شتاب سنج های دقیق تر از نرخ این افزایش کاست ولی مسلما این روش به هزینة زیادمنجر می شود. این در حالی است که خطای GPS تا حد زیادی اتفاقی است. بنابراین ب ترکیب مناسب این دوسیستم می توان معایب هر دو را تا حد زیادی کاهش داد.

امروزه ناوبری هواپیماها با ترکیبی از INS و GPS انجام می شود و بدین صورت مقدارهای ثابت انتگرال گیری INS به طور ادواری به کمک نتایج GPS تصحیح می شود. بنابراین با هر بار تصحیح ، خطای جمع شده INS تا آن لحظه صفر می شود .

به دلیل نرخ بالای تصحیح ( نوعا ) هیچ نیازی به INS های دقیق و گران نیست و بنابراین می توان از یک INS معمولی و ارزان برای ترکیب با GPS استفاده کرد. این نوع ناوبری مخصوصا برای پروازهای طولانی که در آنها قسمت اعظم مسیر خارج از پوشش را دارهای زمینی انجام می شود که کارایی عالی دارد. به طور مثال استفاده از GPS در ناوبری هواپیماهای اقیانوس پیما تا 10 % از هزینة سوخت آنها می کاهد.

2-4-2 ) کاربرد GPS در هدایت دریایی:

در کشتی ها به دلیل سرعت نسبتا پایین حساسیتی نسبت به پیوسته نبودن نتایج GPS در محور زمان وجود ندارد. علاوه براین به دلیل فقدان سوانح ؟ ، مشکلات چند مسیر شدن سینگنال ماهواره و نیز ماسک شدن آن وجود ندارد. پس GPS می تواند به تنهایی ناوبری کشتی ها را انجام دهد. در این صورت باز هم در مسیرهای طولانی و اقیانوسی کشتی قادر خواهد بود مسیر خود را به دقت بپیماند و در زمان مسافرت و سوخت صرفه جویی کند.

2-4- 3- کاربرد GPS در تعیین زوایای وضعیتی وسایل نقلیه:

با قراردادن چند گیرنده GPS در نقاط مختلف یک وسیله نقلیه مثل کشتی ، می‌توان در هر لحظه زوایه های بین محل این گیرنده ها را حساب کرد.


2- 4- 4- تعیین موقعیت ماهواره های کوچک با ارتفاع پایین

دیگر برای مکان یابی این ماهواره ها نیازی به روشهای گران و پردردسر ردیابی و تعقیب زمینی نیست . این ماهواره ها می توانند ماهواره های جاسوسی، هواشناسی یا نقشه برداری باشند که نتایج آنها بدون معلوم بودن مکان ماهواره ها در لحظه تهیه اطلاعات ارزش چندانی ندارد. و تفسیر صحیح نتایج آنها ، منوط به تطبیق آنها برنقشه های جغرافیایی مسطح زمین است. این ماهواره های می توانند از GPS برای تعیین و ثبت محل دقیق گرفتن هر کدام از عکس ها استفاده کنند.

2-4-5- کاربرد در نقشه برداری:

یکی از کاربردهای مهم غیر نظامی GPS استفاده از‌ آن در نقشه برداری است.

در سد سازی در معدن کاوی و راه سازی و غیره GPS می تواند هزینه های اجرایی طرح را تا حد زیادی کاهش دهد. GPS با ایفای نقش در تهیه نقشه های بسیار دقیق برای سیستم های اطلاعات جغرافیایی ، سهم مهمی در مینیمم شدن طول جاده ها و مسیرها و تعیین دقیق محل معدن ها و غیره دارد.

علت استقبال از GPS در نقشه برداری این است که GPS بر خلاف سیستم های قبلی برای مکان یابی به جای روش داپلر سنجی از روش تداخل ؟ که بسیار دقیق تر است استفاده می کند. GPS در تهیه نقشه های هوایی و جایابی دقیق عکس های هوایی نقش مهمی را ایفا می کند.


2- 4-6- کاربرد در مصارف نظامی:

بیشترین کاربرد GPS در مصارف نظامی است . به کمک GPS دیگر هیچ دسته نظامی در هیچ محیط جغرافیایی ناآشنا گم نمی شود. در برخی از گیرنده های GPS ، می توان مسیر عملیاتی یک واحد را از قبل در حافظه دستگاه وارد کرده و حداکثر انحراف مجاز از مسیر را نیز مشخص کرد. در این صورت خروج از دالان مجاز، هشدار می دهد. با این روش می توان محل میدان های مین شناسایی شده را از قبل در حافظه دستگاه وارد کرد تا از هر گونه اشتباه مرگبار جلوگیری شود. علاوه بر واحدهای زمینی، از موشکهای بالستیک گرفته تا هواپیماهای بدون سرنشین و تا بمبهای هوشمند، اهداف خود را با GPS سریع تر ، دقیق تر و ارزان تر پیدا می کنند.

2-4-7- کاربرد در مدیریت و کنترل ناوگانها :

این ناوگان می تواند گشتی های اقیانوس پیمای یک شرکت حمل و نقل بین المللی، کامیونهای یک شرکت باربری زمینی، قطارها ، شبکه تاکسیرانی شهری، خودروهای گشت پلیس ، آمبولانس ها یا خودروهای آتش نشانی باشد. کافی است واحد متحرک را به یک گیرنده GPS و یک کامپیوتر که در صفحه نمایش خود، مجموعه راههای ممکن را نشان می دهد مجهز کرد و سپس تمام واحدها را با یک شبکه داده به مرکز کنترل وصل کرد. در این صورت مرکز کنترل همواره شمایی که کامل از وضعیت و موقعیت و آرایش کلیه واحدها خواهد داشت. پیش بینی می شود در آینده نزدیک حتی خودروهای سواری هم به این تجهیزات مجهز شوند و بتوانند با هدایت صحیح توسط مرکزکنترل ترافیک، بهترین مسیر را در هر شرایطی انتخاب کنند. و یا با دزدیده شدن خودرو توسط این سیتم مکان اختفای آن را کشف کرد.

2-4-8- کاربرد های زیست محیطی:

به عنوان نمونه با بستن یک قلاده مجهز به GPS و یک فرستنده مناسب می توان مسیر مهاجرت دسته های پرندگان و سایر حیوانات را دقیقا و لحظه به لحظه پیگیری کرد. همچنین در اقیانوس شناسی از یک شناور کوچک مجهز به GPS و فرستنده ، جهت بررسی جریانهای آبی در مکانهای ناشناخته در میان اقیانوسها استفاده می شود.

فصل سوم: معرفی پهپاد به عنوان کار بر سیستم GPS.


بررسی تفاوت موتورهای دیزل دو زمانه و چهار زمانه

عنوان موتورهای دیزل که به نام موتورهای اشتعال بر اثر فشار بالا نیز شناخته می شوند از نام دکتر رودلف دیزل اقتباس گشته که در حدود سال 1893 در آلمان اختراع آن را به ثبت رسانید این موتورها از نوع موتورهای احتراق داخلی محسوب می شوند زیرا اشتعال در داخل موتور انجام می شود اساس این نوع موتور از نظر ساختمان و طراحی مشابه موتورهای بنزینی می باشد که آن هم ن
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 162 کیلو بایت
تعداد صفحات فایل 31
بررسی تفاوت موتورهای دیزل دو زمانه و چهار زمانه

فروشنده فایل

کد کاربری 8044

مقدمه

عنوان موتورهای دیزل که به نام موتورهای اشتعال بر اثر فشار بالا نیز شناخته می شوند از نام دکتر رودلف دیزل اقتباس گشته که در حدود سال 1893 در آلمان اختراع آن را به ثبت رسانید. این موتورها از نوع موتورهای احتراق داخلی محسوب می شوند زیرا اشتعال در داخل موتور انجام می شود. اساس این نوع موتور از نظر ساختمان و طراحی مشابه موتورهای بنزینی می باشد که آن هم نوعی موتور احتراق داخلی بوده ولی اختلاف آنها در طریقة ورود سوخت به سیلندرهای موتور و شیوه وقوع احتراق می باشد.

در موتورهای بنزینی ، سوخت با هوا مخلوط شده و وارد سیلندرها می شوند و اشتعال بر اثر یک جرقه الکتریکی توسط شمع ایجاد می گردد. در موتورهای دیزل سوخت به شکل پودر شده به درون سیلندرها تزریق شده و اشتعال در اثر درجه حرارت بالای داخل سیلندرها حاصل می شود. نام اشتعال بر اثر فشار بالا براساس عملکرد موتور انتخاب شده است. موتورهای دیزل بر مبنای نسبت فشار بالا طراحی شده اند که در نتیجه فشار بالا درجه حرارت هوای فشرده شده داخل محفظه احتراق بالا می رود. درجه حرارت به قدر کافی بالا بوده تا پس از تزریق سوخت به داخل محفظه احتراق اشتعال رخ دهد. بنابراین می توان اینگونه نتیجه گرفت که فشار سبب اشتعال خواهد شد به همین دلیل این نوع موتورها را اشتعال بر اثر فشار بالا نامیده اند.

مراحل کار موتور :

فعالیتهایی که درون یک سیلندر موتور انجام می شود به مراحلی (کورس) تقسیم میشوند. عبارت کورس به معنای حرکت پیستون می باشد. بالاترین موقعیت پیستون در سیلندر و یا به عبارت ساده تر نقطه فوقانی کورس پیستون را TDC یا نقطه مرگبالا و پایینترین موقعیت پیستون در سیلندر را نقطه مرگ پایین (BDC) می نامند. بنابراین یک کورس طی فاصله بین TDCبه BDC و یا بر عکس می باشد. میل لنگ از طریق شاتون با یک دور گردش کامل خود دو کورس پیستون را پدید می آورد و پیستون یکبار به نقطه مرگ بالا و یکبار به نقطه مرگ پایین می رسد.

عملیات مشخصی در داخل یک موتور اتفاق می افتد که باعث کارکرد موتور می شوند. این عملیات بصورت یک چرخه تکرار می شوند. بسته به نوع طراحی موتور، یک چرخه کامل شامل دو کورس (دوزمانه) و یا چهار کورس پیستون (چهارزمانه)هستند.

انجام چرخه کامل دیزل نیاز به هوای فشرده شده در سیلندر ، تزریق سوخت، احتراق مخلوط سوخت و هوا، انبساط گازها جهت اعمال نیرو بر روی پیستون و نهایتاً تخلیه گازها از سیلندر دارد.

در موتورهای چهار زمانه، هوا از طریق سوپاپ هوا وارد سیلندر شده و گازهای سوخته شده از راه سوپاپ دود که در سرسیلندر تعبیه شده خارج میشوند. در موتورهای دو زمانه مجراهایی در دیواره سیلندر وجود داردکه از طریق آنها هوا وارد سیلندر می شود. با حرکت پیستون در داخل سیلندر این مجراها باز و بسته می شوند. گازهای خروجی نیز از طریق سوپاپهایی مانند موتورهای چهارزمانه خارج میشوند.

چرخه چهار زمانه:

موتور دیزل چهارزمانه با چرخه ای شامل چهارکورس پیستون دارد. مکش، تراکم، قدرت (احتراق) و تخلیه سوپاپهای هوا و دود بگونه ای تنظیم شده اند که باز وبسته شدن آنها دقیقاً متناسب با حرکت پیستون انجام شود. سوپاپها حرکت خود را از میل سوپاپ می گیرند که میل سوپاپ نیز نیروی محرک خود را از میل لنگ می گیرد.

بدلیل سهولت درک متن زیر باز و بسته شدن سوپاپ ها در نقاط TDC و BDC در نظر گرفته می شود. در عمل آنها دقیقاً در نقاط مرگ و مرگ پایین باز یا بسته نمی شوند اما بگونه ای تنظیم شده اند که کمی قبل یا بعد از این نقاط باز یا بسته شده تاهوای تازه بداخل سیلندر مکیده شده و گازهای سوخته شده بطور کامل از سیلندر رانده شوند.

مراحل مختلف کار یک موتور دیزل چهار زمانه به شرح زیر می باشد.

مکش هوا یا تنفس – کورس مکش هوا با باز شدن سوپاپ هوا و حرکت پیستون به سمت پایین آغاز میشود. هوا از طریق سوپاپ هوا بداخل سیلندر مکیده می شود و در نقطه BDC محفظه سیلندر از هوای تازه پر شده است.

تراکم – پس از رسیدن به نقطه BDC پیستون به سمت بالا حرکت کرده و هوای مکیده شده به داخل سیلندر را متراکم می سازد. در این حالت سوپاپ هوا بسته است. سوپاپ دود نیز بسته است،‌بنابراین محفظه سیلندر آب بندی شده و هیچ منفذی باز نیست. با بالا رفتن پیستون در اثر گردش میل لنگ، هوا متراکم می شود. وقتی پیستون به نقطه TDC می رسد هوا تقریباً به نسبت یک شانزدهم حجم اولیه فشرده شده است. متراکم شدن هوا در سیلندر نه تنها فشار آنرا افزایش می دهد بلکه حرارت آن نیز بالا می رود. اکنون هوا در محفظه کوچک بالای پیستون (محفظه احتراق) آنقدر داغ شده است که می تواند سوخت دیزلی را که از طریق انژکتور به این محفظه تزریق میشود، مشتعل سازد.

قدرت – درست کمی قبل از رسیدن پیستون به TDC مقدار متناسبی سوخت دیزل از طریق انژکتور بداخل محفظه احتراق پاشیده می شود و احتراق صورت می گیرد. هوای داغ محفظه نه تنها یک مخلوط قابل احتراق رابا ذرات سوخت پاشیده شده تشکیل ‌ ‌
می‌دهد بلکه باعث مشتعل شدن آن نیز می گردد. احتراق یا اشتعال بسرعت اتفاق می افتد و فشار داخل سیلندر راافزایش می دهد. گازهای انبساط یافته در اثر احتراق در داخل سیلندر و بر روی سر پیستون نیرویی اعمال می کنند که باعث رانش پیستون به سمت پایین میشود. این حرکت از طریق شاتون به میل لنگ انتقال یافته و باعث چرخش آن و عملیات بعدی موتور می شود. در زمان احتراق هر دو سوپا بسته هستند اما در انتهای کورس سوپاپ دود باز می‌شود.

تخلیه دود – در این زمان سوپاپ دود باز میشود، پیستون به سمت بالا حرکت کرده و گازهای سوخته شده را از طریق مجرای سوپاپ دود به بیرون می راند. در این حالت سوپاپ هوا بسته است. وقتی پیستون به نقطه TDC می رسد سوپاپ دود بسته می‌شود.

به این ترتیب چرخه چهار زمانه موتور کامل می شود. با ادامه کار موتور سوپاپ هوا مجدداً باز میشود و هوای تازه با شروع پایین رفتن پیستون بداخل سیلندر مکیده می شود و چرخه مکش تکرار می گردد. سوپاپ هوا درست قبل از بسته شدن کامل سوپاپ دود باز می گردد. این حالت قیچی کردن سوپاپها نامیده می شود. قیچی کردن سوپاپها باعث میشود گازهای سوخته شده بسرعت از سیلندر خارج شده و سیلندر تمیز گردد.

همانطور که قبلاً ذکر شد موتورهای دیزل بگونه ای طراحی شده اند که نسبت تراکم در آنها بسیار می باشد و این نسبت تراکم باعث تولید فشار و حرارت بسیار زیادی
می گردد تا جائیکه پس از پاشش سوخت در محفظه احتراق، حرارت موجود، مخلوط سوخت را مشتعل می سازد.

یکی از قوانین اساسی علوم (قانون گازها) به این موضوع ارتباط پیدا می کند به این صورت که بطور خلاصه افزایش فشار در یک سیلندر باعث افزایش دما می شود بنابراین حرارت هوا آنقدر بالا می رود که موجب اشتعال می شود.

موتور دیزل دو زمانه :

موتور دیزل دو زمانه با دو کورس پیستون یک چرخه کامل خود را طی می کند: یک کورس بطرف بالا و یک کورس به طرف پایین. در موتورهای دیزل دو زمانه مجراهایی در دیواره سیلندر تعبیه شده اند که حرکت پیستون به بالا و پایین سبب بسته و باز شدن آنها میشود.

این مجراها بعنوان مجاری هوا و دود طراحی شده اند. در موتورهای دیزل معمولاً هم از مجرا و هم از سوپاپ (مجرا برای ورود هوا و سوپاپ برای خروج دود از سیلندر ) استفاده میشود.

این موتورها به یک پمپ باد یا دمنده مجهز شده اند که هوا را با فشار اندکی از فشار دود خروجی سیلندر به داخل آن می دمد. این پمپ نه تنها سیلندر را از هوای تازه کاملاً پر می کند بلکه به خروج سریعتر و بهتر گازهای سوخته پس از احتراق کمک می کند و این به تمیز شدن محفظه سیلندر از دود و گازهای سوخته شده اشاره دارد.

عملیات کار موتور دو زمانه به شرح زیر است:

(a) پیستون در نقطه BDC است.هوا بوسیله پمپ دمنده و از طریق مجراهای ورود هوا در دیواره سیلندر به داخل دمیده میشود این عمل باعث پر شدن محفظه سیلندر از هوای تازه و خارج شدن گازهای سوخته از طریق سوپاپ دود در سیلندر خواهد شد که در این زمان باز می باشد.

(b) پیستون در این زمان رو به بالا حرکت کرده و مجرای ورود هوا را می بندد تا ورود هوای دمیده شده توسط پمپ قطع گردد. حرکت پیستون به سمت بالا ادامه می یابد و هوای محبوس در قسمت فوقانی پیستون به نسبت حدود یک شانزدهم حجم اولیه فشرده می شود. بنابراین حرارت هوای فشرده افزایش می یابد.

(c) پیستون تقریباً در کورس تراکم به نقطه TDC رسیده است. سوخت پودر شده از طریق انژکتور به داخل اطاقک احتراق پاشیده می شود و بدلیل وجود حرارت بسیار زیاد در هوای متراکم این محفظه مشتعل می گردد. فشار حاصل از احتراق در کورس قدرت پیستون را به سمت پایین می راند.

(d) پیستون تقریباً در کورس قدرت به نقطه BDC رسیده است. سوپاپ دود طوری تنظیم شده است که درست قبل از BDC باز شود و اجازه دهد گازهای سوخته شده از سیلندر خارج شوند. همچنانکه میل لنگ به گردش خود ادامه می دهد پیستون به نقطه BDC می رسد و جلوی مجرای ورود هوا را باز می کند و مجدداً پمپ، هوای تازه را به داخل سیلندر می دمد و چرخه همانند قبل ادامه می یابد. با هر دور گردش میل لنگ یک چرخه کامل می شود.

تخلیه دود